Purpose
Thalidomide, originally developed as a sedative, was subsequently identified to have antiangiogenic properties. Lenalidomide is an antiangiogenic and immunomodulatory agent that has been utilized in the treatment of patients with brain tumors. We studied the pharmacokinetics and cerebrospinal fluid (CSF) penetration of thalidomide and lenalidomide in a nonhuman primate model.
Methods
A dose of 50 mg of thalidomide or 20 mg of lenalidomide were administered once orally to each of three rhesus monkeys. Plasma and CSF samples were obtained at specified intervals and the thalidomide or lenalidomide concentrations were determined by high-performance liquid chromatography with tandem mass spectrometry. Pharmacokinetic parameters were estimated using noncompartmental methods. CSF penetration was calculated as area under the concentration-time curve (AUC) CSF/AUC plasma.
Results
For thalidomide, the median apparent clearance (Cl/F) was 2.9 mL/min/kg, the median plasma AUC was 80 µM•hr, and the median terminal half-life (t½) was 13.3 hours. For lenalidomide, the median Cl/F was 8.7 mL/min/kg, the median AUC was 9 µM•hr, and the median t½ was 5.6 hours. Thalidomide was detected in the CSF of all animals, with a median penetration of 42%. Lenalidomide was detected in the CSF of 2 of 3 animals, with a CSF penetration of 11% in each.
Conclusion
Thalidomide and lenalidomide penetrate into the CSF after oral administration of clinically relevant doses. Plasma exposure to lenalidomide was similar in our model to that observed in studies involving children who have brain tumors. These results support further development of lenalidomide for the treatment of central nervous system malignancies.
These data indicate that PA and PB penetrate well into the CSF after i.v. administration. There may be an advantage to administration of PB over PA, since the administration of PB results in significant exposure to both active compounds. Clinical trials to evaluate the activity of PA and PB in pediatric central nervous system tumors are in progress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.