This review article provides a brief summary of recent research progress on anisotropic wetting on one-dimensional (1D) and directionally patterned surfaces, as well as the technical importance in various applications. Inspiration from natural structures exhibiting anisotropic wetting behavior is first discussed. Development of fabrication techniques for topographically and chemically 1D patterned surfaces and directional nanomaterials are then reviewed, with emphasis on anisotropic behavior with topographically (structurally) patterned surfaces. The basic investigation of anisotropic wetting behavior and theoretical simulations for anisotropic wetting are also further reviewed. Perspectives concerning future direction of anisotropic wetting research and its potential applications in microfluidic devices, lab-on-a-chip, sensor, microreactor and self-cleaning are presented.
Clinical and field-portable diagnostic devices require the detection of atto-to zeptomoles of biological molecules rapidly, easily and at low cost, with stringent requirements in terms of robustness and reliability. Though a number of creative approaches to this difficult problem have been reported 1-9 , numerous unmet needs remain in the marketplace, particularly in resource-poor settings [10][11][12] . Using rational materials design, we investigated harnessing the amplification inherent in a radical chain polymerization reaction to detect molecular recognition. Polymerization-based amplification is shown to yield a macroscopically observable polymer, easily visible to the unaided eye, as a result of as few as ~1,000 recognition events (10 zeptomoles). Design and synthesis of a dual-functional macromolecule that is capable both of selective recognition and of initiating a polymerization reaction was central to obtaining high sensitivity and eliminating the need for any detection equipment. Herein, we detail the design criteria that were used and compare our findings with those obtained using enzymatic amplification. Most excitingly, this new approach is general in that it is readily adaptable to facile detection at very low levels of specific biological interactions of any kind.
BackgroundAcoustophoresis has been utilized successfully in applications including cell trapping, focusing, and purification. One current limitation of acoustophoresis for cell sorting is the reliance on the inherent physical properties of cells (e.g., compressibility, density) instead of selecting cells based upon biologically relevant surface-presenting antigens. Introducing an acoustophoretic cell sorting approach that allows biochemical specificity may overcome this limitation, thus advancing the value of acoustophoresis approaches for both the basic research and clinical fields.ResultsThe results presented herein demonstrate the ability for negative acoustic contrast particles (NACPs) to specifically capture and transport positive acoustic contrast particles (PACPs) to the antinode of an ultrasound standing wave. Emulsification and post curing of pre-polymers, either polydimethylsiloxane (PDMS) or polyvinylmethylsiloxane (PVMS), within aqueous surfactant solution results in the formation of stable NACPs that focus onto pressure antinodes. We used either photochemical reactions with biotin-tetrafluorophenyl azide (biotin-TFPA) or end-functionalization of Pluronic F108 surfactant to biofunctionalize NACPs. These biotinylated NACPs bind specifically to streptavidin polystyrene microparticles (as cell surrogates) and transport them to the pressure antinode within an acoustofluidic chip.ConclusionTo the best of our knowledge, this is the first demonstration of using NACPs as carriers for transport of PACPs in an ultrasound standing wave. By using different silicones (i.e., PDMS, PVMS) and curing chemistries, we demonstrate versatility of silicone materials for NACPs and advance the understanding of useful approaches for preparing NACPs. This bioseparation scheme holds potential for applications requiring rapid, continuous separations such as sorting and analysis of cells and biomolecules.
A rapid, water-soluble enzyme-mediated radical chain initiation system involving glucose oxidase and Fe +2 generated hydrogels within minutes at 25°C and in ambient oxygen. The initiation components were evaluated for their effect on polymerization rates of hydroxyethyl acrylate-poly (ethylene glycol) 575 diacrylate comonomer solutions using near-infrared spectroscopy. Increasing glucose concentration increased polymerization rates until reaching a rate plateau above 1 × 10 −3 M of glucose. A square root dependence of the initial polymerization rate on Fe +2 concentration was observed between 1.0 × 10 −4 M and 5.0 × 10 −4 M of Fe +2 whereupon excess Fe +2 reduced final acrylate conversions. The glucose oxidase-mediated initiation system was employed for encapsulation of fibroblasts (NIH3T3s) into a poly(ethylene glycol) tetra-acrylate (M n~2 0,000) hydrogel scaffold demonstrating 96% (±3%) viability at 24 hours post-encapsulation. This first use of enzyme-mediated redox radical chain initiation for cellular encapsulation demonstrates polymerization of hydrogels in situ with kinetic control, minimal oxygen inhibition issues and utilization of low initiator concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.