The legs of flies from 16 different mutant strains ofDrosophila melanogaster were examined for abnormal cuticular polarities and extra joints. The strains were chosen for study because they manifest abnormal cuticular polarities in some parts of the body (10 strains) or because they have missing or defective tarsal joints (6 strains). All but three of the stocks were found to exhibit misorientations of either the bristles, hairs, or "bract-socket vectors" on the legs. The latter term denotes an imaginary vector pointing from a hairlike structure called a "bract" to the bristle socket with which it is associated. On the legs of wild-type flies nearly all such vectors point distally, as do the bristles and hairs. In the mutant flies, the most common vector misorientation is a 180° reversal. When the bract-socket vectors of adjacent bristle sites in the same bristle row point toward one another, the distance between the sites is frequently abnormally large, whereas when the vectors point in opposite directions, the interval is frequently abnormally small. This correlation is interpreted to mean that bristle cells actively repel one another via cytoplasmic extensions that are longer in the direction of the bract-socket vector than in the opposite direction. Repulsive forces of this kind may be responsible for "fine-tuning" the regularity of bristle spacing in wild-type flies.Extra tarsal joints were found in eight of the 16 strains. A ninth strain completely lacking tarsal joints appears in some cases to have an extra tibia-basitarsus joint in its tibia. Whereas the tarsi of wild-type flies contain four joints, the tarsi ofspiny legs mutant flies contain as many as eight joints. In this extreme extra-joint phenotype, four of the joints correspond to the normal wild-type joints, and there is an extra joint in every tarsal segment except the distal-most (fifth) segment. Nearly all such ectopic extra joints have inverted polarity. In other strains the extra tarsal joints are located mainly at the wild-type joint sites, and joints of this sort have wild-type polarity. The alternation of normal and inverted (extra) joints inspiny legs resembles the alternation of normal and inverted (extra) body segment boundaries in the embryonic-lethal mutantpatch, suggesting that tarsal and body segmentation may share a common patterning mechanism.
The genes decapentaplegic, wingless, and Distalless appear to be instrumental in constructing the anatomy of the adult Drosophila leg. In order to investigate how these genes function and whether they act coordinately, we analyzed the leg phenotypes of the single mutants and their inter se double mutant compounds. In decapentaplegic the tarsi frequently exhibit dorsal deficiencies which suggest that the focus of gene action may reside dorsally rather than distally. In wingless the tarsal hinges are typically duplicated along with other dorsal structures, confirming that the hinges arise dorsally. The plane of symmetry in double-ventral duplications caused by decapentaplegic is virtually the same as the plane in double-dorsal duplications caused by wingless. It divides the fate map into two parts, each bisected by the dorsoventral axis. In the double mutant decapentaplegic wingless the most ventral and dorsal tarsal structures are missing, consistent with the notion that both gene products function as morphogens. In wingless Distal-less compounds the legs are severely truncated, indicating an important interaction between these genes. Distal-less and decapentaplegic manifest a relatively mild synergism when combined.
Many of the 14,000 genes of Drosophila are involved in the development of imaginal discs. These hollow sacs of cells make adult structures during metamorphosis, and their study is crucial to comprehending how a larva becomes a fully-functioning fly. This book examines the genetic circuitry of the well-known 'fruit fly', tackling questions of cell assemblage and pattern formation, of the hows and the whys behind the development of the fly. After an initial examination of the proximity versus pedigree imperatives, the book delves into bristle pattern formation and disc development, with entire chapters devoted to the leg, wing, and eye. Extensive appendices include a glossary of protein domains, catalogues of well-studied genes, and an outline of signaling pathways. More than 30 wiring diagrams among over 60 detailed schematics clarify the text. No student or practising scientist engaged in the study of Drosophila genetics should be without this comprehensive reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.