The complexity of brain circuitry is manifested by numerous cell types based on genetic marker, location and neural connectivity. Cell-type specific recording and manipulation is essential to disentangle causal neural mechanisms in physiology and behavior; however, many current approaches are largely limited by number of intersectional features, incompatibility of common effectors and insufficient gene expression. To tackle these limitations, we devise an intein-based intersectional synthesis of transactivator (IBIST) to selectively control gene expression of common effectors in specific cell types defined by a combination of multiple features. We validate the specificity and sufficiency of IBIST to control common effectors including fluorophores, optogenetic opsins and Ca2+ indicators in various intersectional conditions in vivo. Using IBIST-based Ca2+ imaging, we show that the IBIST can intersect up to five features, and that hippocampal cells tune differently to distinct emotional valences depending on the pattern of projection targets. Collectively, the IBIST multiplexes the capability to intersect cell-type features and is compatible with common effectors to effectively control gene expression, monitor and manipulate neural activities.
The cell-type-specific recording and manipulation is instrumental to disentangle causal neural mechanisms in physiology and behavior and increasingly requires intersectional control; however, current approaches are largely limited by the number of intersectional features, incompatibility of common effectors and insufficient gene expression. Here, we utilized the protein-splicing technique mediated by intervening sequences (intein) and devised an intein-based intersectional synthesis of transactivator (IBIST) to selectively control gene expression of common effectors in multiple-feature defined cell types in mice. We validated the specificity and sufficiency of IBIST to control fluorophores, optogenetic opsins and Ca2+ indicators in various intersectional conditions. The IBIST-based Ca2+ imaging showed that the IBIST can intersect five features and that hippocampal neurons tune differently to distinct emotional stimuli depending on the pattern of projection targets. Collectively, the IBIST multiplexes the capability to intersect cell-type features and controls common effectors to effectively regulate gene expression, monitor and manipulate neural activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.