For many years, i-vector based audio embedding techniques were the dominant approach for speaker verification and speaker diarization applications. However, mirroring the rise of deep learning in various domains, neural network based audio embeddings, also known as d-vectors, have consistently demonstrated superior speaker verification performance. In this paper, we build on the success of dvector based speaker verification systems to develop a new d-vector based approach to speaker diarization. Specifically, we combine LSTM-based d-vector audio embeddings with recent work in nonparametric clustering to obtain a state-of-the-art speaker diarization system. Our system is evaluated on three standard public datasets, suggesting that d-vector based diarization systems offer significant advantages over traditional i-vector based systems. We achieved a 12.0% diarization error rate on NIST SRE 2000 CALLHOME, while our model is trained with out-of-domain data from voice search logs.
In data stream clustering, it is desirable to have algorithms that are able to detect clusters of arbitrary shape, clusters that evolve over time, and clusters with noise. Existing stream data clustering algorithms are generally based on an online-offline approach: The online component captures synopsis information from the data stream (thus, overcoming real-time and memory constraints) and the offline component generates clusters using the stored synopsis. The online-offline approach affects the overall performance of stream data clustering in various ways: the ease of deriving synopsis from streaming data; the complexity of data structure for storing and managing synopsis; and the frequency at which the offline component is used to generate clusters. In this article, we propose an algorithm that (1) computes and updates synopsis information in constant time; (2) allows users to discover clusters at multiple resolutions; (3) determines the right time for users to generate clusters from the synopsis information; (4) generates clusters of higher purity than existing algorithms; and (5) determines the right threshold function for density-based clustering based on the fading model of stream data. To the best of our knowledge, no existing data stream algorithms has all of these features. Experimental results show that our algorithm is able to detect arbitrarily shaped, evolving clusters with high quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.