Abstract.The availability and quality of nectar for adults are thought to affect fecundity of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Experiments were conducted to analyze the effect of adult feeding on the fecundity, and oviposition pattern of moths, and larval performance (egg hatch). The moths were fed either on distilled water, honey solution, or one of a range of concentrations of sucrose solution. The results showed that diets with sugars significantly increased fecundity and adult lifespan. Lifespan, total numbers of eggs and egg mass were significantly higher for females that fed on sugar during adult life. Egg hatch (a measure of offspring fitness) decreased over time regardless of sucrose concentration, but had always higher levels in the groups fed sugars. The peak of the ovipositing period was delayed and prolonged, with more eggs deposited, when moths were fed on sugar solution. In conclusion, adult feeding increases the fecundity of female moths and plays an important role in enhancing the fitness of individual cotton bollworm offspring.
This study was aimed to explore how a high-quality diet or a flavor plus multi-enzyme diet affects the feed intake, nutrient digestibility and antioxidation capacity of lactating sows and the growth of their progeny. Thirty primiparous sows were randomly assigned to three treatments from d 2 of lactation until weaning (d 21): control (CON), with a basal diet; high quality (HQ), with 200 kcal/kg higher net energy than CON; or the CON diet supplemented with 500 mg/kg flavor and 100 mg/kg multi-enzymes (F + E). Sows fed with the HQ or F + E diets improved piglets’ live weight (p < 0.05) and average daily weight gain (p < 0.10), litter weight gain (p < 0.10) and piglet growth to milk yield ratio (p < 0.10). Compared with CON, the HQ and F + E groups increased the digestibility of ether extract, ash, neutral detergent fiber, crude fiber and phosphorus (p < 0.10), and the HQ group also increased dry matter, gross energy, crude protein, acid detergent fiber and energy intake (p < 0.05). Compared with CON, the F + E group decreased serum urea nitrogen and aspartate aminotransferase (p < 0.05) and enhanced superoxide dismutase, catalase and glutathione peroxidase, but it decreased malondialdehyde in milk supernatant (p < 0.05).
Background Dietary fat is important for energy provision and immune function of lactating sows and their progeny. However, knowledge on the impact of fat on mammary transcription of lipogenic genes, de novo fat synthesis, and milk fatty acid (FA) output is sparse in sows. This study aimed to evaluate impacts of dietary fat levels and FA composition on these traits in sows. Forty second-parity sows (Danish Landrace × Yorkshire) were assigned to 1 of 5 dietary treatments from d 108 of gestation until weaning (d 28 of lactation): low-fat control diet (3% added animal fat); or 1 of 4 high-fat diets with 8% added fat: coconut oil (CO), fish oil (FO), sunflower oil (SO), or 4% octanoic acid plus 4% FO (OFO). Three approaches were taken to estimate de novo milk fat synthesis from glucose and body fat. Results Daily intake of FA was lowest in low-fat sows within fat levels (P < 0.01) and in OFO and FO sows within high-fat diets (P < 0.01). Daily milk outputs of fat, FA, energy, and FA-derived carbon reflected to a large extent the intake of those. On average, estimates for de novo fat synthesis were 82 or 194 g/d from glucose according to method 1 or 2 and 255 g de novo + mobilized FA/d according to method 3. The low-fat diet increased mammary FAS expression (P < 0.05) and de novo fat synthesis (method 1; P = 0.13) within fat levels. The OFO diet increased de novo fat synthesis (method 1; P < 0.05) and numerically upregulated mammary FAS expression compared to the other high-fat diets. Across diets, a daily intake of 440 g digestible FA minimized milk fat originating from glucose and mobilized body fat. Conclusions Sows fed diets with low-fat or octanoic acid, through upregulating FAS expression, increased mammary de novo fat synthesis whereas the milk FA output remained low in sows fed the low-fat diet or high-fat OFO or FO diets, indicating that dietary FA intake, dietary fat level, and body fat mobilization in concert determine de novo fat synthesis, amount and profiles of FA in milk.
Waxy gene plays a key role for amylose synthesis in wheat seeds. The study evaluated the Waxy gene variability in 59 accessions of six diploid Triticum and Aegilops species. The percentages of variable sites, singleton variable sites, and parsimony informative sites were 16.38, 5.59, and 10.79 %, respectively. A total of 22 amino acid changes in the transit peptide and the remaining in the mature protein were observed. Moreover, 17 amino acid changes between Triticum and Aegilops species were also detected. Specially, Gla 14 and Phe 153 was observed in diploid Triticum, compared with Thr 14 and Tyr 153 in diploid Aegilops. Two types of amino acids, Gla 5/Val 5 and Ile 140/Val 140, were identified in T. urartu, as well as Val 22/Phe 22, Thr 52/Lys 52, and Gln 54/delete in A. tauschii. The insertion/ deletions (InDels) had high frequency in intron region, but very low in transit peptide and exon region. Neighbour-joining tree showed that 146 sequences from 23 species could be clustered into eight groups with the species characterizations. The Wx-B1 of polyploid Triticum were grouped with A. sharonensis, A. longissima, A. searsii, A. speltoides, while Wx-D1 of T. aestivum and T. spelta together with A. umbellulata, A. markgrafii, A. comosa, and A. tauschii. The Wx-A1 of polyploid Triticum were separated clearly with the diploid species. The Wx-B1 could be divided into two subgroups and maybe had two phylogenetic origins, but most of them were related to A. speltoides. Waxy gene of A. tauschii also had two subgroups, and the sequences from southern Caspian (Mazandaran, Iran) were more closed with Wx-D1. The variability of 5 0 Un-Translation Region (UTR) of waxy was stronger than intron and exon region based on genetic distance. Phylogeography analysis showed that geography affected strongly the distribution of all accessions along the north-south axis based on the partial open reading fragment (ORF) of waxy gene, A. speltoides and A. longissima along the west-east axis and north-south axis based on exon, and A. tauschii along the west-east axis based on 5 0 UTR, respectively. Our results suggest that diploid Triticum and Aegilops have new waxy gene resources; waxy gene could play a more important role in genetic exploitation, genetic relationship evaluation and phylogeography investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.