Two-dimensional ultrasound (US) and color doppler flow imaging are associated with certain limitations in the preprocedural evaluation and design of the puncture path for biopsies of thoracic lesions, such as a poorly defined boundary between the tumor and the atelectatic lesions in central lung cancer with atelectasis. Contrast-enhanced ultrasound (CEUS) can be valuable in the preoperative evaluation of the biopsy site and in increasing the accuracy of the biopsy. The present study investigated the value of clinical application of CEUS in US-guided core needle biopsy (US-CNB) in improving the diagnostic accuracy in thoracic lesions. A total of 120 patients with first-stage thoracic lesions from the Affiliated Tumor Hospital of Guangxi Medical University who underwent US-CNB were recruited and randomnly assigned to a conventional US group (n=66) and a CEUS group (n=54). All patients underwent preoperative evaluation and US-guided puncture of thoracic lesions. The intergroup differences in sonographic features, biopsy duration, biopsy success rate and complications were assessed. The CEUS group had a higher rate of detection of necrotic tissue (40.7% vs. 16.7%; χ
2
=8.633; P=0.003) and change of initial puncture path (48.1%) compared with the US group. In central lung cancer with atelectasis, the ability to distinguish between tumor and atelectasis was higher in the CEUS group compared with the conventional US group (31.5 vs. 7.6%; χ
2
=11.336; P=0.001). In addition, the CEUS group had a higher puncture success (96.3 vs. 80.3%; χ
2
=6.946; P=0.008) and a lower complication rate (3.7% vs. 18.2%; χ
2
=6.041; P=0.014) compared with the US group. CEUS can identify necrotic areas and occult tumors within atelectatic lung tissue and can be used for guiding puncture biopsy of thoracic lesions to improve the diagnostic accuracy with greater comparative clinical utility than conventional US. Pre-biopsy CEUS is especially useful for patients undergoing repeated US-CNB and those with hypovascular lesions, atelectasis or necrosis.
Background. Hepatocellular carcinoma (HCC) is one of the most highly aggressive cancer worldwide with an extremely poor prognosis. Evidence has revealed that microRNA-587 (miR-587) is abnormally expressed in a series of cancers. However, its expressions and functions in HCC have not been clearly acknowledged. Methods. We detected the expression level of miR-587 both in the Gene Expression Omnibus (GEO) database and 86 paired clinical HCC tissues together with paired adjacent normal tissues by quantitative real-time PCR (qRT-PCR). Afterwards, the transfected HCC cell line SMMC-7721 cells were collected for the cell proliferation assay, cell-cycle arrest, cell migration, and invasion assays to explore the roles of miR-587 in regulating cellular function. In addition, bioinformatics analysis, combined with qRT-PCR and dual-luciferase reporter assays, were performed to confirm whether ribosomal protein SA (RPSA) mRNA was the direct target gene of miR-587. Moreover, the Cancer Genome Atlas (TCGA) and GEO databases as well as 86 paired clinical HCC tissues were used to verify the negative regulation between miR-587 and RPSA. Results. In the present study, both the GEO database (GSE36915 and GSE74618) analysis and qRT-PCR analysis of 86 paired clinical tissues showed that miR-587 was significantly downregulated in HCC tissues. The overexpression of miR-587 inhibited proliferation, cell cycle, migration, and invasion in SMMC-7721 cells. In addition, miR-587 directly interacted with the 3′-untranslated region (UTR) of RPSA. Moreover, miR-587 overexpression directly suppressed RPSA expression, and the two genes were inversely expressed in HCC based on the analyses in TCGA and GEO (GSE36376) databases and qPCR analysis of 86 paired clinical tissues. Conclusion. Our results demonstrate that miR-587 is downexpressed in HCC and regulates the cellular function by targeting RPSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.