Amplification of the gene encoding the ErbB2 (Her2/neu) receptor tyrosine kinase is critical for the progression of several forms of breast cancer. In a large-scale clinical trial, treatment with Herceptin (trastuzumab), a humanized blocking antibody against ErbB2, led to marked improvement in survival. However, cardiomyopathy was uncovered as a mitigating side effect, thereby suggesting an important role for ErbB2 signaling as a modifier of human heart failure. To investigate the physiological role of ErbB2 signaling in the adult heart, we generated mice with a ventricular-restricted deletion of Erbb2. These ErbB2-deficient conditional mutant mice were viable and displayed no overt phenotype. However, physiological analysis revealed the onset of multiple independent parameters of dilated cardiomyopathy, including chamber dilation, wall thinning and decreased contractility. Additionally, cardiomyocytes isolated from these conditional mutants were more susceptible to anthracycline toxicity. ErbB2 signaling in cardiomyocytes is therefore essential for the prevention of dilated cardiomyopathy.
Caveolins are important components of caveolae, which have been implicated in vesicular trafficking and signal transduction. To investigate the in vivo significance of Caveolins in mammals, we generated mice deficient in the caveolin-1 (cav-1) gene and have shown that, in the absence of Cav-1, no caveolae structures were observed in several nonmuscle cell types. Although cav-1 ؊/؊ mice are viable, histological examination and echocardiography identified a spectrum of characteristics of dilated cardiomyopathy in the left ventricular chamber of the cav-1-deficient hearts, including an enlarged ventricular chamber diameter, thin posterior wall, and decreased contractility. These animals also have marked right ventricular hypertrophy, suggesting a chronic increase in pulmonary artery pressure. Direct measurement of pulmonary artery pressure and histological analysis revealed that the cav-1 ؊/؊ mice exhibit pulmonary hypertension, which may contribute to the right ventricle hypertrophy. In addition, the loss of Cav-1 leads to a dramatic increase in systemic NO levels. Our studies provided in vivo evidence that cav-1 is essential for the control of systemic NO levels and normal cardiopulmonary function.
During fetal prostate development, Sonic hedgehog (Shh) expression by the urogenital sinus epithelium activates Gli-1 expression in the adjacent mesenchyme and promotes outgrowth of the nascent ducts. Shh signaling is down-regulated at the conclusion of prostate ductal development. However, a survey of adult human prostate tissues reveals substantial levels of Shh signaling in normal, hyperplasic, and malignant prostate tissue. In cancer specimens, the Shh expression is localized to the tumor epithelium, whereas Gli-1 expression is localized to the tumor stroma. Tight correlation between the levels of Shh and Gli-1 expression suggests active signaling between the tissue layers. To determine whether Shh-Gli-1 signaling could be functionally important for tumor growth and progression, we performed experiments with the LNCaP xenograft tumor model and demonstrated that: 1). Shh expressed by LNCaP tumor cells activates Gli-1 expression in the tumor stroma, 2). genetically engineered Shh overexpression in LNCaP cells leads to increased tumor stromal Gli-1 expression, and 3). Shh overexpression dramatically accelerates tumor growth. These data suggest that hedgehog signaling from prostate cancer cells to the stroma can elicit the expression of paracrine signals, which promote tumor growth.
The chemisorption of 1-decanethiol on the Au(111) single crystal has been studied with synchrotronbased, high-resolution photoemission spectroscopy with molecular film prepared from both gas-phase dosing and solution immersion to vary surface coverage over a wider range. The structure of the molecular film, determined separately via low-energy electron diffraction, includes a c(23 × 3) stripe phase and c(3 × 2 3) saturated phases. Careful curve fitting of the S 2p2/3 core level reveals that there is only one sulfur species at a binding energy of 162.1 eV in the film and the spectrum of the S 2p core level does not vary with the surface coverage and existence temperature of the decanethiolate. This finding is inconsistent with the sulfur-pairing model proposed based on X-ray scattering and standing wave studies. Up to two C 1s core levels at 284.0 and 285.0 eV can be observed, depending on the surface coverage. Angle-resolved X-ray photoelectron spectroscopy measurements are utilized to provide a direct correlation between C 1s binding energy and film thickness. It is argued that the difference in C 1s binding energy is not due to chemical shift but results from the screening difference of substrate electrons, that depends on the orientation of the decanethiolate film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.