The estimation of ship resistance in ice is a fundamental area of research and poses a substantial challenge for the design and safe use of ships in ice-covered waters. In order to estimate the ice resistance with greater reliability, we develop in this paper an improved Lindqvist formulation for the estimation of bending resistance in level ice based on the superposition of double-plates. In the developed method, an approximate model of an ice sheet is firstly presented by idealizing ice sheeta as the combination of a semi-infinite elastic plate and an infinite one resting on an elastic foundation. The Mohr–Coulomb criterion is then introduced to determine the ice sheet’s failure. Finally, an improved Lindqvist formulation for estimation of ice resistance is proposed. The accuracy of the developed formulation is validated using full-scale test data of the ship KV Svalbard in Norway, testing the model as well as the numerical method. The effect of ice thickness, stem angle and breadth of bow on ship resistance is further investigated by means of the developed formulation.
At present, the calculation method of ice load on surface navigation ships has been very mature, but the calculation method of submarine ice load is very few. The reasonable evaluation of submarine ice load has become an urgent problem to be solved. In this paper, the mechanical characteristics of the submarine surfacing ice-breaking process are systematically analyzed. Based on the theory of plate and shell, the theoretical calculation models of ice-breaking resistance of the submarine command tower and hull are established, respectively, and the ice load calculation method of the command tower and the hull is obtained. Then, the submarine model SUBOFF is used to perform the numerical simulation of the submarine’s ice-breaking and surfacing process. The numerical result is compared with the ice-breaking resistance calculation model. The results show that the ice-breaking resistance calculation model proposed in this paper is consistent with the numerical simulation results, and the influence of parameters such as ice mechanical properties, the upper area of the command tower, and initial crack length on ice-breaking resistance is established. The calculation model in this paper can provide a theoretical reference for the optimization design of polar submarine structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.