Mercury pollution is a global problem, and the development of stable and sensitive fluorescent probes for mercury ions in the water phase has long been sought. In this work, a novel fluorescence resonance energy transfer (FRET)-based ratiometric sensor for detecting Hg(2+) in pure water was demonstrated. Polymeric nanoparticles prepared by miniemulsion polymerization of methyl methacrylate and acrylic acid were used as the scaffold for the FRET-based sensor. A hydrophobic fluorescent dye nitrobenzoxadiazolyl derivative (NBD) was embedded in the nanoparticles during the polymerization and used as the donor. A spirolactam rhodamine derivative SRHB-NH(2) was synthesized and then covalently linked onto the particle surface and used as an ion recognition element. The presence of Hg(2+) in the water dispersion of nanoparticles induced the ring-opening reaction of the spirolactam rhodamine moieties and led to the occurrence of the FRET process, affording the nanoparticle system a ratiometric sensor for Hg(2+). The nanoparticle sensor can selectively detect the Hg(2+) in water with the detection limit of 100 nM (ca. 20 ppb). It has been found that the FRET-based system with smaller nanoparticles as the scaffold exhibited higher energy transfer efficiency and was more preferred for the accurate ratiometric detection. Moreover, the FRET-based sensor was applicable in a relatively wide pH range (pH 4-8) in water; thus, this approach may provide a new strategy for ratiometric detection of analytes in environmental and biological applications.
A fluorescence resonance energy transfer (FRET) based ratiometric sensing system for mercury ions is built in nano-sized core/corona micelles formed by a poly(ethylene oxide)-b-polystyrene diblock copolymer. For this system, a hydrophobic fluorescein derivative (FLS-C12), which serves as the energy transfer donor, is incorporated into the micelle core during the micelle formation; and a spirolactam-rhodamine derivative (RhB-CS) as a probe for mercury ions is located at the micelle core/corona interface. An efficient ring-opening reaction of RhB-CS induced by mercury ions generates the long-wavelength rhodamine B fluorophore which can act as the energy acceptor, affording the micelle nanoparticles the water-dispersible FRET-based ratiometric detection system for mercury ions, with a detection limit of 0.1 µM in water. The donor and the probe fluorophores, with their structure being appropriately modified, can strongly bind (non-covalently) to the specific sites of the micelles and form a stable ratiometric sensor in water and in some biological fluids. In addition, with the water-soluble and biocompatible poly(ethylene oxide) (PEO) as the corona of the micelles, the nano-sized sensing system can readily permeate through cell membrane and detect intracellular Hg(2+) level changes.
Background:
By using bimetal nanocomposite modified electrode, the electrochemical DNA biosensor showed the advantages of high sensitivity, low cost, rapid response and convenient operation, which was applied for disease diagnosis, food safety, and biological monitoring.
Objective:
A nanocomposite consisting of platinum (Pt)-gold (Au) bimetal and two-dimensional graphene (GR) was synthesized by hydrothermal method, which was modified on the surface of carbon ionic liquid electrode and further used for the immobilization of probe ssDNA related to Vibrio Parahaemolyticus tlh gene to construct an electrochemical DNA sensor.
Method:
Potassium ferricyanide was selected as electrochemical indicator, cyclic voltammetry was used to study the electrochemical behaviours of different modified electrodes and differential pulse voltammetry was employed to test the analytical performance of this biosensor for the detection of target gene sequence.
Results:
This electrochemical DNA biosensor could detect the Vibrio Parahaemolyticus tlh gene sequence as the linear concentration in the range from 1.0×10-13 mol L-1 to 1.0×10-6 mol L-1 with the detection limit as 2.91×10-14 mol L-1 (3σ).
Conclusion:
This proposed electrochemical DNA biosensor could be used to identify the special gene sequence with good selectivity, low detection limit and wide detection range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.