Alzheimer’s disease (AD) is one of most prevalent dementias, which is characterized by the deposition of extracellular amyloid-beta protein (Aβ) and the formation of neurofibrillary tangles within neurons. Although stereotaxic transplantation of mesenchymal stem cells (MSCs) into the hippocampus of AD animal model as immunomodulatory cells has been suggested as a potential therapeutic approach to prevent the progress of AD, it is invasive and difficult for clinical perform. Systemic and central nervous system inflammation play an important role in pathogenesis of AD. T regulatory cells (Tregs) play a crucial role in maintaining systemic immune homeostasis, indicating that transplantation of Tregs could prevent the progress of the inflammation. In this study, we aimed to evaluate whether systemic transplantation of purified autologous Tregs from spleens of AβPPswe/PS1dE9 double-transgenic mice after MSCs from human umbilical cords (UC-MSCs) education in vitro for 3 days could improve the neuropathology and cognition deficits in AβPPswe/PS1dE9 double-transgenic mice. We observed that systemic transplantation of autologous Tregs significantly ameliorate the impaired cognition and reduced the Aβ plaque deposition and the levels of soluble Aβ, accompanied with significantly decreased levels of activated microglia and systemic inflammatory factors. In conclusion, systemic transplantation of autologous Tregs may be an effective and safe intervention to prevent the progress of AD.
Alzheimer's disease (AD) is the leading cause of dementia in the elderly and is characterized by amyloid plaques, neurofibrillary tangles, and neuronal loss. Cumulative evidence supports that neuroinflammation is an important factor for the pathogenesis of AD and contributes to amyloid beta (Aβ) generation. However, there has been no effective treatment for AD. Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) have a potential therapeutic effect in the treatment for neurological diseases. In the present study, we evaluated the therapeutic effect of WJ-MSC transplantation on the neuropathology and memory deficits in amyloid precursor protein (APP) and presenilin-1 (PS1) double-transgenic mice and discussed the mechanism. WJ-MSCs were intravenously transplanted into the APP/PS1 mice. Four weeks after treatment, WJ-MSCs significantly improved the spatial learning and alleviated the memory decline in the APP/PS1 mice. Aβ deposition and soluble Aβ levels were significantly reduced after WJ-MSC treatment. Furthermore, WJ-MSCs significantly increased the expression of the anti-inflammatory cytokine, IL-10. Meanwhile, pro-inflammatory microglial activation and the expressions of pro-inflammatory cytokines, IL-1β and TNFα, were significantly down-regulated by WJ-MSC treatment. Thus, our findings suggest that WJ-MSCs might produce beneficial effects on the prevention and treatment for AD through modulation of neuroinflammation.
Increasing research suggests that mitochondrial defects play a major role in Alzheimer’s disease (AD) pathogenesis. We aimed to better understand changes in mitochondria with the development and progression of AD. We compared APPsw/PS1dE9 transgenic mice at 3, 6, 9, and 12 months old as an animal model of AD and age-matched C57BL/6 mice as controls. The learning ability and spatial memory ability of APPsw/PS1dE9 mice showed significant differences compared with controls until 9 and 12 months. Mitochondrial morphology was altered in hippocampus tissue of APPsw/PS1dE9 mice beginning from the third month. ‘Medullary corpuscle’, which is formed by the accumulation of a large amount of degenerative and fragmented mitochondria in neuropils, may be the characteristic change observed on electron microscopy at a late stage of AD. Moreover, levels of mitochondrial fusion proteins (optic atrophy 1 and mitofusin 2) and fission proteins (dynamin-related protein 1 and fission 1) were altered in transgenic mice compared with controls with progression of AD. We found increased levels of fission and fusion proteins in APP/PS1 mice at 3 months, indicating that the presence of abnormal mitochondrial dynamics may be events in early AD progression. Changes in mitochondrial preceded the onset of memory decline as measured by the modified Morris water maze test. Abnormal mitochondrial dynamics could be a marker for early diagnosis of AD and monitoring disease progression. Further research is needed to study the signaling pathways that govern mitochondrial fission/fusion in AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.