Brassica napus (2n = 4x = 38, AACC) is an important allopolyploid crop derived from interspecific crosses between Brassica rapa (2n = 2x = 20, AA) and Brassica oleracea (2n = 2x = 18, CC). However, no truly wild B. napus populations are known; its origin and improvement processes remain unclear. Here, we resequence 588 B. napus accessions. We uncover that the A subgenome may evolve from the ancestor of European turnip and the C subgenome may evolve from the common ancestor of kohlrabi, cauliflower, broccoli, and Chinese kale. Additionally, winter oilseed may be the original form of B. napus. Subgenome-specific selection of defense-response genes has contributed to environmental adaptation after formation of the species, whereas asymmetrical subgenomic selection has led to ecotype change. By integrating genome-wide association studies, selection signals, and transcriptome analyses, we identify genes associated with improved stress tolerance, oil content, seed quality, and ecotype improvement. They are candidates for further functional characterization and genetic improvement of B. napus.
It is a dream that future synthetic chemistry can mimic living systems to process multistep cascade reactions in a one-pot fashion. One of the key challenges is the mutual destruction of incompatible or opposing reagents, for example, acid and base, oxidants and reductants. A conceptually novel strategy is developed here to address this challenge. This strategy is based on a layered Pickering emulsion system, which is obtained through lamination of Pickering emulsions. In this working Pickering emulsion, the dispersed phase can separately compartmentalize the incompatible reagents to avoid their mutual destruction, while the continuous phase allows other reagent molecules to diffuse freely to access the compartmentalized reagents for chemical reactions. The compartmentalization effects and molecular transport ability of the Pickering emulsion were investigated. The deacetalization-reduction, deacetalization-Knoevenagel, deacetalization-Henry and diazotization-iodization cascade reactions demonstrate well the versatility and flexibility of our strategy in processing the one-pot cascade reactions involving mutually destructive reagents.
To address the limitations of batch organic-aqueous biphasic catalysis, we develop a conceptually novel method termed Flow Pickering Emulsion, or FPE, to process biphasic reactions in a continuous flow fashion. This method involves the compartmentalization of bulk water into micron-sized droplets based on a water-in-oil Pickering emulsion, which are packed into a column reactor. The compartmentalized water droplets can confine water-soluble catalysts, thus "immobilizing" the catalyst in the column reactor, while the interstices between the droplets allow the organic (oil) phase to flow. Key fundamental principles underpinning this method such as the oil phase flow behavior, the stability of compartmentalized droplets and the confinement capability of these droplets toward water-soluble catalysts are experimentally and theoretically investigated. As a proof of this concept, case studies including a sulfuric acid-catalyzed addition reaction, a heteropolyacid-catalyzed ring opening reaction and an enzyme-catalyzed chiral reaction demonstrate the generality and versatility of the FPE method. Impressively, in addition to the excellent durability, the developed FPE reactions exhibit up to 10-fold reaction efficiency enhancement in comparison to the existing batch reactions, indicating a unique flow interface catalysis effect. This study opens up a new avenue to allow conventional biphasic catalysis reactions to access more sustainable and efficient flow chemistry using an innovative liquid-liquid interface protocol.
SummaryBrassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twentyfour genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum.
There is as trong desire to design and synthesize catalysts that assemble at the oil-water interface to improve the efficiency of biphasic reactions.A nisotropic dumbbell-shaped bi-component mesoporous carbon-organosilica Janus particles with asymmetric wettability are synthesized through aonestep compartmentalized growth of amesoporous organosilica sphere attached to am esoporous resorcinol-formaldehyde (RF) sphere.Alibrary was prepared of tunable Janus particles possessing diverse hollows tructures with various functionalities.Asaproof of concept, the Janus particle-derived catalyst can assemble at the oil-water interface to stabilizeP ickering emulsions.O wing to the increased reaction interface area, the Janus catalyst exhibits am ore than three-fold increase in catalytic efficiency compared to the Pt loaded carbon sphere catalyst in aqueous hydrogenation reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.