Failure mode and effects analysis (FMEA) is a widely used technique for assessing the risk of potential failure modes in designs, products, processes, system, and services. One of the main problems with FMEA is the need to address a variety of assessments given by FMEA team members and the sequence of the failure modes according to the degree of risk factors. Many different methods have been proposed to improve the traditional FMEA, which is impractical when the risk assessments given by multiple experts to one failure mode are imprecise, incomplete, or inconsistent. However, the existing methods cannot adequately handle these types of uncertainties. In this paper, a new risk priority model based on D numbers and technique for the order of preference by similarity to ideal solution (TOPSIS) is proposed to evaluate the risk in FMEA. In the proposed model, the assessments given by the FMEA team members are represented by D numbers, where a new feasible and effective method can effectively represent the uncertain information. The TOPSIS method, a multicriteria decision‐making method is presented to rank the preference of failure modes with respect to risk factors. Finally, an application of the failure modes of the rotor blades of an aircraft turbine is provided to illustrate the efficiency of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.