The highly efficient transamidation of several primary, secondary, and tertiary amides with aliphatic and aromatic amines (primary and secondary) is described. The reaction is performed in the presence of a 5 mol % concentration of different hydrated salts of Fe(III), and the results show that the presence of water is crucial. The methodology was also applied to urea and phthalimide to demonstrate its versatility and wide substrate scope. An example of its use is an intramolecular application in the synthesis of 2,3-dihydro-5H-benzo[b]-1,4-thiazepin-4-one, which is the bicyclic core of diltiazem and structurally related drugs (Budriesi, R.; Cosimelli, B.; Ioan, P.; Carosati, E.; Ugenti, M. P.; Spisani, R. Curr. Med. Chem. 2007, 14, 279-287). A plausible mechanism that explains the role of water is proposed on the basis of experimental observations and previous mechanistic suggestions for transamidation reactions catalyzed by transition metals such as copper and aluminum. This methodology represents a significant improvement over other existing methods; it can be performed in air and with wet or technical grade solvents.
Currently, the power and usefulness of biocatalysis in organic synthesis is undeniable, mainly due to the very high enantiomeric excess reached using enzymes, in an attempt to emulate natural processes. However, the use of isolated enzymes has some significant drawbacks, the most important of which is cost. The use of whole cells has emerged as a useful strategy with several advantages over isolated enzymes; for this reason, modern research in this field is increasing, and various reports have been published recently. This review surveys the most recent developments in the enantioselective reduction of carbon-carbon double bonds and prochiral ketones and the oxidation of prochiral sulfides using whole cells as biocatalytic systems.
A highly diastereoselective synthesis of trifluoromethylated 1,3-dioxanes is described. The reaction proceeds by an addition/oxa-Michael sequence and works efficiently under mild reaction conditions, with a good substrate scope and acceptable to good yields.
A highly diastereoselective intramolecular oxa-Michael reaction on α,β-unsaturated α-amino-δ-hydroxycarboxylic acid esters is presented; 1,3-dioxanes functionalized in positions 2,4 and 6 were obtained in good yields and with excellent selectivities; an experimental and computational study was carried out to understand the reaction course in terms of yields and selectivities. This reaction proceeds under mild reaction conditions using highly electrophilic aldehydes and ketones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.