The development and planning of optimal network reconfiguration strategies for electrical networks is greatly improved with proper application of graph theory techniques. This paper investigates the application of Kruskal's maximal spanning tree algorithm in finding the optimal radial networks for different loading scenarios from an interconnected meshed electrical network integrated with distributed generation (DG). The work is done with an objective to assess the prowess of Kruskal's algorithm to compute, obtain or derive an optimal radial network (optimal maximal spanning tree) that gives improved voltage stability and highest loss minimization from among all the possible radial networks obtainable from the DG-integrated mesh network for different time-varying loading scenarios. The proposed technique has been demonstrated on a multiple test systems considering time-varying load levels to investigate the performance and effectiveness of the suggested method. For interconnected electrical networks with the presence of distributed generation, it was found that application of Kruskal's algorithm quickly computes optimal radial configurations that gives the least amount of power losses and better voltage stability even under varying load conditions.
Article Highlights
Investigated network reconfiguration strategies for electrical networks with the presence of Distributed Generation for time-varying loading conditions.
Investigated the application of graph theory techniques in electrical networks for developing and planning reconfiguration strategies.
Applied Kruskal’s maximal spanning tree algorithm to obtain the optimal radial electrical networks for different loading scenarios from DG-integrated meshed electrical network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.