The emergence of distributed generators has changed the operational mode and fault characteristics of the distribution network, in a way which can severely influence protection. This paper proposes a d-axis-based current differential protection scheme. The d-axis current characteristics of inverter-interfaced distributed generators and synchronous generators are analyzed. The differential protection criterion using sampling values of the d-axis current component is then constructed. Compared to conventional phase-based current differential protection, the proposed protection reduces the number of required communication channels, and is suitable for distribution networks with inverter-interfaced distributed generators with complex fault characteristics. Finally, a 10 kV active distribution network model is built in the PSCAD platform and protection prototypes are developed in RTDS. Superior sensitivity and fast speed are verified by simulation and RTDS-based tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.