A fine-resolution (1/10°) ocean/sea ice model configured in the Community Earth System Model framework is compared with observations and studied to determine the basin-scale and local balances controlling the variability of sea ice anomalies from the mean seasonal cycle in the Bering
a b s t r a c tThe seasonal cycle of sea ice variability in the Bering Sea, together with the thermodynamic and dynamic processes that control it, are examined in a fine resolution (1/10°) global coupled ocean/sea-ice model configured in the Community Earth System Model (CESM) framework. The ocean/sea-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos Sea Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period [1970][1971][1972][1973][1974][1975][1976][1977][1978][1979][1980][1981][1982][1983][1984][1985][1986][1987][1988][1989]. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of sea ice concentration strongly resemble satellite-derived observations, as quantified by root-meansquare errors and pattern correlation coefficients. The sea ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy flux between the atmosphere and the ice in the northern region and by heat flux from the ocean to the ice along the southern ice edge, especially on the western side. The sea ice force balance analysis shows that sea ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated sea ice was mainly formed in the northern Bering Sea, with the maximum ice growth rate occurring along the coast due to cold air from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model sea ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering Sea, model sea ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic patterns occur in the model, but with typically smaller magnitudes and with season-specific geographical and directional differences.
Abstract. Arctic sea ice has been declining rapidly in recent decades. We investigate how poleward transport of moisture and heat from lower latitudes through atmospheric rivers (ARs) influences Arctic sea ice variations. We use ERA5 hourly reanalysis data for 1981–2020 at 0.25º x 0.25º resolution to examine meteorological conditions and sea ice changes associated with ARs in the Arctic. In years 2012 and 2020, which had extremely low summer Arctic sea ice extent, we show that individual AR events associated with large cyclones initiate rapid sea ice decrease through turbulent heat fluxes, longwave radiation, and winds. We further carry out statistical analysis of meteorological conditions and sea ice variations for 1981–2020 over the entire Arctic Ocean. We find that, on weather timescales, atmospheric moisture content anticorrelates significantly with sea ice concentration tendency almost everywhere in the Arctic Ocean, while dynamic sea ice motion driven by northward winds further reduces sea ice concentration.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.