Photodynamic therapy (PDT), using a combination of chemical photosensitizers (PS) and light, has been successfully applied as a noninvasive therapeutic procedure to treat tumors by inducing apoptosis or necrosis of cancer cells. However, most current clinically used PS have suffered from the instability in physiological conditions which lead to low photodynamic therapy efficacy. Herein, a highly biocompatible poly(dopamine) (PDA) nanoparticle conjugated with Chlorin e6 (referenced as the PDA-Ce6 nanosphere) was designed as a nanotherapeutic agent to achieve simultaneous photodynamic/photothermal therapy (PDT/PTT). Compared to the free Ce6, the PDA-Ce6 nanosphere exhibited significantly higher PDT efficacy against tumor cells, because of the enhanced cellular uptake and subsequently greater reactive oxygen species (ROS) production upon laser irradiation at 670 nm. Meanwhile, the PDA-Ce6 nanosphere could be also used as a photoabsorbing agent for PTT, because of the excellent photothermal conversion ability of PDA nanoparticle under laser irradiation at 808 nm. Moreover, our prepared nanosphere had extremely low dark toxicity, while excellent phototoxicity under the combination laser irradiation of 670 and 808 nm, both in vitro and in vivo, compared to any single laser irradiation alone. Therefore, our prepared PDA-Ce6 nanosphere could be applied as a very promising dual-modal phototherapeutic agent for enhanced cancer therapy in future clinical applications.
In this work, we developed a simple and general method for highly sensitive detection of proteins and small molecules based on cyclic enzymatic signal amplification (CESA) and hairpin aptamer probe. Our detection system consists of a hairpin aptamer probe, a linker DNA, two sets of DNA-modified AuNPs, and nicking endonuclease (NEase). In the absence of a target, the hairpin aptamer probe and linker DNA can stably coexist in solution. Then, the linker DNA can assemble two sets of DNA-modified AuNPs, inducing the aggregation of AuNPs. However, in the presence of a target, the hairpin structure of aptamer probe is opened upon interaction with the target to form an aptamer probe-target complex. Then, the probe-target complex can hybridize to the linker DNA. Upon formation of the duplex, the NEase recognizes specific nucleotide sequence and cleaves the linker DNA into two fragments. After nicking, the released probe-target complex can hybridize with another intact linker DNA and the cycle starts anew. The cleaved fragments of linker DNA are not able to assemble two sets of DNA-modified AuNPs, thus a red color of separated AuNPs can be observed. Taking advantage of the AuNPs-based sensing technique, we are able to assay the target simply by UV-vis spectroscopy and even by the naked eye. Herein, we can detect the human thrombin with a detection limit of 50 pM and adenosine triphosphate (ATP) with a detection limit of 100 nM by the naked eye. This sensitivity is about 3 orders of magnitude higher than that of traditional AuNPs-based methods without amplification. In addition, this method is general since there is no requirement of the NEase recognition site in the aptamer sequence. Furthermore, we proved that the proposed method is capable of detecting the target in complicated biological samples.
In this paper, a core–shell nanocomposite of clusters of superparamagnetic iron oxide nanoparticles coated with poly(dopamine) (SPION clusters@PDA) is fabricated as a magnetic field-directed theranostic agent that combines the capabilities of highly sensitive magnetic resonance imaging (MRI) and photothermal cancer therapy. The highly concentrated SPION cluster core is suitable for sensitive MRI due to its superparamagnetic properties, and the poly(dopamine) coating layer can induce cancer cell death under near-infrared (NIR) laser irradiation because of the photothermal conversion ability of PDA. MRI scanning reveals that the nanocomposite has relatively high r2 and r2(*) relaxivities, and the r2(*) values are nearly threefold higher than the r2 values because of the clustering of the SPIONs in the nanocomposite core. Due to the rapid response to magnetic field gradients, enhanced cellular uptake of our nanocomposite mediated by an external magnetic field can be achieved, thus producing significantly enhanced local photothermal killing efficiency against cancer cells under NIR irritation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.