Background MYB proteins are a large group of transcription factors. The overexpression of MYB genes has been reported to improve abiotic stress tolerance in plant. However, due to the variety of plant species studied and the types of gene donors/recipients, along with different experimental conditions, it is difficult to interpret the roles of MYB in abiotic stress tolerance from published data. Methods Using meta-analysis approach, we investigated the plant characteristics involved in cold, drought, and salt stress in MYB-overexpressing plants and analyzed the degrees of influence on plant performance by experimental variables. Results The results show that two of the four measured plant parameters in cold-stressed plants, two of the six in drought-stressed, and four of the 13 in salt-stressed were significantly impacted by MYB overexpression by 22% or more, and the treatment medium, donor/recipient species, and donor type significantly influence the effects of MYB-overexpression on drought stress tolerance. Also, the donor/recipient species, donor type, and stress duration all significantly affected the extent of MYB-mediated salt stress tolerance. In summary, this study compiles and analyzes the data across studies to help us understand the complex interactions that dictate the efficacy of heterologous MYB expression designed for improved abiotic stress tolerance in plants.
Background: The MYB family of proteins is a large group of transcription factors found in all eukaryotes studied to date that has expanded significantly in plants where they are involved in a wide diversity of processes from development to abiotic stress responses. The overexpression of various MYB genes has been reported to improve stress tolerance in different plant species. However, due to the variety of plant species studied and the types of gene donors/recipients, along with different experimental conditions, it is difficult to interpret the roles of MYB genes in abiotic stress tolerance from published data.Result: We investigated the plant characteristics involved in cold, drought, and salt stress in MYB-overexpressing plants through the meta-analysis approach, and analyzed the degrees of influence on plant performance by experimental variables. The results show that two of the four measured plant parameters in cold-stressed plants, two of the six in drought-stressed, and four of the 13 in salt-stressed were significantly impacted by MYB overexpression by 22% or more. By contrast, only two of the 13 plant parameters were significantly impacted in non-stressed plants by 18% or more. Conclusions: These data suggest that the treatment medium, donor/recipient species, and donor type significantly influence the effects of MYB overexpression on drought stress tolerance. Under salt stress, the donor/recipient species, donor type, and stress duration all significantly affected the extent of MYB-mediated salt stress tolerance. This study compiles and analyzes the data across studies to help us understand the complex interactions that dictate the efficacy of heterologous MYB expression designed for improved abiotic stress tolerance in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.