BackgroundLittle has been known about the role of non-coding RNA regulatory network in the patterns of growth and invasiveness of gastric cancer (GC) development.MethodsMicroRNAs (miRNAs) microarray was used to screen differential miRNA expression profiles in Ming’s classification. The significant differential expressions of representative miRNAs and their interacting circular RNA (circRNA) were confirmed in GC cell line and 63 pairs of GC samples. Then, a circRNA/miRNA network was constructed by bioinformatics approaches to identify molecular pathways. Finally, we explored the clinical value of the common targets in the pathway by using receiver operating characteristic curve and survival analysis.ResultsSignificantly differential expressed miRNAs were found in two pathological types of GC. Both of miR-124 and miR-29b were consistently down-regulated in GC. CircHIPK3 could play a negative regulatory role on miR-124/miR-29b expression and associated with T stage and Ming’s classification in GC. The bioinformatics analyses showed that targets expression of circHIPK3-miR-124/miR-29b axes in cancer-related pathways was able to predict the status of GC and associated with individual survival time.ConclusionsThe targets of circHIPK3-miR-124/miR-29b axes involved in the progression of GC. CircHIPK3 could take part in the proliferation process of GC cell and may be potential biomarker in histological classification of GC.Electronic supplementary materialThe online version of this article (10.1186/s12967-018-1582-8) contains supplementary material, which is available to authorized users.
Conventional tumor markers for non-invasive diagnosis of gastric cancer (GC) exhibit insufficient sensitivity and specificity to facilitate detection of early gastric cancer (EGC). We aimed to identify EGC-specific exosomal lncRNA biomarkers that are highly sensitive and stable for the non-invasive diagnosis of EGC. Hence, in the present study, exosomes from the plasma of five healthy individuals and ten stage I GC patients and from culture media of four human primary stomach epithelial cells and four gastric cancer cells (GCCs) were isolated. Exosomal RNA profiling was performed using RNA sequencing to identify EGC-specific exosomal lncRNAs. A total of 79 and 285 exosomal RNAs were expressed at significantly higher levels in stage I GC patients and GCCs, respectively, than that in normal controls. Through combinational analysis of the RNA sequencing results, we found two EGC-specific exosomal lncRNAs, lncUEGC1 and lncUEGC2, which were further confirmed to be remarkably up-regulated in exosomes derived from EGC patients and GCCs. Furthermore, stability testing demonstrates that almost all the plasma lncUEGC1 was encapsulated within exosomes and thus protected from RNase degradation. The diagnostic accuracy of exosomal lncUEGC1 was evaluated, and lncUEGC1 exhibited AUC values of 0.8760 and 0.8406 in discriminating EGC patients from healthy individuals and those with premalignant chronic atrophic gastritis, respectively, which was higher than the diagnostic accuracy of carcinoembryonic antigen. Consequently, exosomal lncUEGC1 may be promising in the development of highly sensitive, stable, and non-invasive biomarkers for EGC diagnosis.Electronic supplementary materialThe online version of this article (10.1186/s12943-018-0834-9) contains supplementary material, which is available to authorized users.
There is a double-negative feedback mechanism that controls TEAD-YAP and HNF4α expression in vitro and in vivo, thereby regulating cellular proliferation and differentiation. Given that YAP acts as a dominant oncogene in HCC and plays a crucial role in stem cell homeostasis and tissue regeneration, manipulating the interaction between YAP, TEADs, and HNF4α may provide a new approach for HCC treatment and regenerative medicine. (Hepatology 2017;65:1206-1221).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.