Cells’ ability to apply contractile forces to their environment and to sense its mechanical properties (e.g., rigidity) are among their most fundamental features. Yet, the interrelations between contractility and mechanosensing, in particular, whether contractile force generation depends on mechanosensing, are not understood. We use theory and extensive experiments to study the time evolution of cellular contractile forces and show that they are generated by time-dependent actomyosin contractile displacements that are independent of the environment’s rigidity. Consequently, contractile forces are nonmechanosensitive. We further show that the force-generating displacements are directly related to the evolution of the actomyosin network, most notably to the time-dependent concentration of F-actin. The emerging picture of force generation and mechanosensitivity offers a unified framework for understanding contractility.
Protein aggregation is a hallmark of neurodegeneration. Here, we find that Huntington’s disease-related HTT-polyQ aggregation induces a cellular proteotoxic stress response, while ALS-related mutant FUS (mutFUS) aggregation leads to deteriorated proteostasis. Further exploring chaperone function as potential modifiers of pathological aggregation in these contexts, we reveal divergent effects of naturally-occurring chaperone isoforms on different aggregate types. We identify a complex of the full-length (FL) DNAJB14 and DNAJB12, that substantially protects from mutFUS aggregation, in an HSP70-dependent manner. Their naturally-occurring short isoforms, however, do not form a complex, and lose their ability to preclude mutFUS aggregation. In contrast, DNAJB12-short alleviates, while DNAJB12-FL aggravates, HTT-polyQ aggregation. DNAJB14-FL expression increases the mobility of mutFUS aggregates, and restores the deteriorated proteostasis in mutFUS aggregate-containing cells and primary neurons. Our results highlight a maladaptive cellular response to pathological aggregation, and reveal a layer of chaperone network complexity conferred by DNAJ isoforms, in regulation of different aggregate types.
Amyloid-β (Aβ), reported as a significant constituent of drusen, was implicated in the pathophysiology of age-related macular degeneration (AMD), yet the identity of the major pathogenic Aβ species in the retina has remained hitherto unclear. Here, we examined the in-vivo retinal impact of distinct supramolecular assemblies of Aβ. Fibrillar (Aβ40, Aβ42) and oligomeric (Aβ42) preparations showed clear biophysical hallmarks of amyloid assemblies. Measures of retinal structure and function were studied longitudinally following intravitreal administration of the various Aβ assemblies in rats. Electroretinography (ERG) delineated differential retinal neurotoxicity of Aβ species. Oligomeric Aβ42 inflicted the major toxic effect, exerting diminished ERG responses through 30 days post injection. A lesser degree of retinal dysfunction was noted following treatment with fibrillar Aβ42, whereas no retinal compromise was recorded in response to Aβ40 fibrils. The toxic effect of Aβ42 architectures was further reflected by retinal glial response. Fluorescence labelling of Aβ42 species was used to detect their accumulation into the retinal tissue. These results provide conceptual evidence of the differential toxicity of particular Aβ species in-vivo, and promote the mechanistic understanding of their retinal pathogenicity. Stratifying the impact of pathological Aβ aggregation in the retina may merit further investigation to decipher the pathophysiological relevance of processes of molecular self-assembly in retinal disorders.
The purpose of the present study was to determine the normal relationship of urine and plasma osmolality in pre-term and full-term infants. Twenty-nine full-term and 35 pre-term babies were studied during the first week of life. Random simultaneous urine and plasma samples were measured for osmolality. Statistical analysis defined the normal relationship of plasma to urine osmolality. This suggests an osmotic threshold of 282 mOsm/kg and 291 mOsm/kg for full-term and pre-term babies, respectively. These values are different from the 285-290 mOsm/kg of adolescents and adults. The nomograms provided may serve as a useful aid in the bedside diagnosis of dysfunctional secretion of vasopressin.
Protein aggregation is a hallmark of many neurodegenerative diseases. In order to cope with misfolding and aggregation, cells have evolved an elaborate network of molecular chaperones, composed of different families. But while chaperoning mechanisms for different families are well established, functional and regulatory diversification within chaperone families is still largely a mystery. Here we decided to explore chaperone functional diversity, through the lens of pathological aggregation. We revealed that different naturally-occurring isoforms of DNAJ chaperones showed differential effects on different types of aggregates. We performed a chaperone screen for modulators of two neurodegeneration-related aggregating proteins, the Huntingtons disease-related HTT-polyQ, and the ALS-related mutant FUS (mutFUS). The screen identified known modulators of HTT-polyQ aggregation, confirming the validity of our approach. Surprisingly, modulators of mutFUS aggregation were completely different than those of HTT-polyQ. Interestingly, different naturally-occurring isoforms of DNAJ chaperones had opposing effects on HTT-polyQ vs. mutFUS aggregation. We identified a complex of the full length (FL) DNAJB14 and DNAJB12 isoforms which substantially alleviated mutFUS aggregation, in an HSP70-dependent manner. Their naturally occurring short isoforms were unable to form the complex, nor to interact with HSP70, and lost their ability to reduce mutFUS aggregation. In contrast, the short isoform of DNAJB12 significantly alleviated HTT-polyQ aggregation, while DNAJB12-FL aggravated HTT-polyQ aggregation. Finally, we demonstrated that full-length DNAJB14 ameliorated mutFUS aggregation compared to DNAJB14-short in primary neurons. Together, our data unraveled distinct molecular properties required for aggregation protection in different neurodegenerative diseases, and revealed a new layer of complexity of the chaperone network elicited by naturally occurring J-protein isoforms, highlighting functional diversity among the DNAJ family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.