Background Little is known about the inter-relationship among fruit and vegetable intake, gut microbiota and metabolites, and type 2 diabetes (T2D) in human prospective cohort study. The aim of the present study was to investigate the prospective association of fruit and vegetable intake with human gut microbiota and to examine the relationship between fruit and vegetable-related gut microbiota and their related metabolites with type 2 diabetes (T2D) risk. Methods This study included 1879 middle-age elderly Chinese adults from Guangzhou Nutrition and Health Study (GNHS). Baseline dietary information was collected using a validated food frequency questionnaire (2008–2013). Fecal samples were collected at follow-up (2015–2019) and analyzed for 16S rRNA sequencing and targeted fecal metabolomics. Blood samples were collected and analyzed for glucose, insulin, and glycated hemoglobin. We used multivariable linear regression and logistic regression models to investigate the prospective associations of fruit and vegetable intake with gut microbiota and the association of the identified gut microbiota (fruit/vegetable-microbiota index) and their related fecal metabolites with T2D risk, respectively. Replications were performed in an independent cohort involving 6626 participants. Results In the GNHS, dietary fruit intake, but not vegetable, was prospectively associated with gut microbiota diversity and composition. The fruit-microbiota index (FMI, created from 31 identified microbial features) was positively associated with fruit intake (p < 0.001) and inversely associated with T2D risk (odds ratio (OR) 0.83, 95%CI 0.71–0.97). The FMI-fruit association (p = 0.003) and the FMI-T2D association (OR 0.90, 95%CI 0.84–0.97) were both successfully replicated in the independent cohort. The FMI-positive associated metabolite sebacic acid was inversely associated with T2D risk (OR 0.67, 95%CI 0.51–0.86). The FMI-negative associated metabolites cholic acid (OR 1.35, 95%CI 1.13–1.62), 3-dehydrocholic acid (OR 1.30, 95%CI 1.09–1.54), oleylcarnitine (OR 1.77, 95%CI 1.45–2.20), linoleylcarnitine (OR 1.66, 95%CI 1.37–2.05), palmitoylcarnitine (OR 1.62, 95%CI 1.33–2.02), and 2-hydroglutaric acid (OR 1.47, 95%CI 1.25–1.72) were positively associated with T2D risk. Conclusions Higher fruit intake-associated gut microbiota and metabolic alteration were associated with a lower risk of T2D, supporting the public dietary recommendation of adopting high fruit intake for the T2D prevention.
Context Several small studies have suggested that the gut microbiome might influence osteoporosis, but there is little evidence from human metabolomics studies to explain this association. Objective This study examined the association of gut microbiome dysbiosis with osteoporosis and explored the potential pathways through which this association occurs using faecal and serum metabolomics. Methods We analysed the composition of the gut microbiota by 16S rRNA profiling and bone mineral density (BMD) using dual-energy X-ray absorptiometry in 1776 community-based adults. Targeted metabolomics in faeces (15 categories) and serum (12 categories) were further analysed in 971 participants using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Results This study showed that osteoporosis was related to the beta diversity, taxonomy and functional composition of the gut microbiota. The relative abundance of Actinobacillus, Blautia, Oscillospira, Bacteroides and Phascolarctobacterium was positively associated with osteoporosis. However, Veillonellaceae other, Collinsella and Ruminococcaceae other were inversely associated with the presence of osteoporosis. The association between microbiota biomarkers and osteoporosis was related to levels of peptidases and transcription machinery in microbial function. Faecal and serum metabolomics analyses suggested that tyrosine and tryptophan metabolism and valine, leucine and isoleucine degradation were significantly linked to the identified microbiota biomarkers and to osteoporosis, respectively. Conclusion This large population-based study provided robust evidence connecting gut dysbiosis, faecal metabolomics and serum metabolomics with osteoporosis. Our results suggest that gut dysbiosis and amino acid metabolism could be targets for intervention in osteoporosis.
This study provides useful epidemiological information on cervical HPV infection prevalence in general female population from Guangdong Province, China. In this population, HPV infection prevalence was 7.3%, and genotypes HPV16, HPV52, and HPV58 showed a relatively high prevalence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.