Emerging evidence suggests that impaired regulation of adipocyte lipolysis contributes to the proinflammatory immune cell infiltration of metabolic tissues in obesity, a process that is proposed to contribute to the development and exacerbation of insulin resistance. To test this hypothesis in vivo, we generated mice with adipocyte-specific deletion of adipose triglyceride lipase (ATGL), the rate-limiting enzyme catalyzing triacylglycerol hydrolysis. In contrast to previous models, adiponectin-driven Cre expression was used for targeted ATGL deletion. The resulting adipocyte-specific ATGL knockout (AAKO) mice were then characterized for metabolic and immune phenotypes. Lean and diet-induced obese AAKO mice had reduced adipocyte lipolysis, serum lipids, systemic lipid oxidation, and expression of peroxisome proliferator-activated receptor alpha target genes in adipose tissue (AT) and liver. These changes did not increase overall body weight or fat mass in AAKO mice by 24 weeks of age, in part due to reduced expression of genes involved in lipid uptake, synthesis, and adipogenesis. Systemic glucose and insulin tolerance were improved in AAKO mice, primarily due to enhanced hepatic insulin signaling, which was accompanied by marked reduction in diet-induced hepatic steatosis as well as hepatic immune cell infiltration and activation. In contrast, although adipocyte ATGL deletion reduced AT immune cell infiltration in response to an acute lipolytic stimulus, it was not sufficient to ameliorate, and may even exacerbate, chronic inflammatory changes that occur in AT in response to diet-induced obesity.
Obesity and the metabolic syndrome are major contributors to morbidity and mortality from a variety of diseases affecting virtually all organ systems ( 1 ). Obesity is essentially a disorder of lipid accumulation, primarily in the form of triacylglycerols (TAGs) in adipose tissue. TAGs serve as a critical reservoir for lipid metabolites involved not only in energy homeostasis but also other essential cellular processes including membrane synthesis and cell signaling. In the context of chronic energy excess and/or impaired lipid metabolism, TAGs accumulate in metabolically relevant nonadipose tissues such as liver, where they are associated with cellular and systemic Abstract PNPLA3 (adiponutrin, calcium-independent phospholipase A 2 epsilon [iPLA 2 ]) is an adipose-enriched, nutritionally regulated protein that belongs to the patatinlike phospholipase domain containing (PNPLA) family of lipid metabolizing proteins. Genetic variations in the human PNPLA3 gene (i.e., the rs738409 I148M allele) has been strongly and repeatedly associated with fatty liver disease. Although human PNPLA3 has triacylglycerol (TAG) hydrolase and transacylase activities in vitro, its in vivo function and physiological relevance remain controversial. The objective of this study was to determine the metabolic consequences of global targeted deletion of the Pnpla3 gene in mice. We found that Pnpla3 mRNA expression is altered in adipose tissue and liver in response to acute and chronic nutritional challenges. However, global targeted deletion of the Pnpla3 gene in mice did not affect TAG hydrolysis, nor did it infl uence energy/glucose/lipid homoeostasis or hepatic steatosis/injury. Experimental interventions designed to increase Pnpla3 expression (refeeding, high-sucrose diet, diet-induced obesity, and liver X receptor agonism) likewise failed to reveal differences in the above-mentioned metabolic phenotypes. Expression of the Pnpla3 paralog, Pnpla5 , was increased in adipose tissue but not in liver of Pnpla3 -defi cient mice, but compensatory regulation of genes involved in TAG metabolism was not identifi ed. Together these data argue against a role for Pnpla3 loss-of-function in fatty liver disease or metabolic syndrome in mice. -Basantani,
Triacylglycerol accumulation in insulin target tissues is associated with insulin resistance. Paradoxically, mice with global targeted deletion of adipose triglyceride lipase (ATGL), the ratelimiting enzyme in triacylglycerol hydrolysis, display improved glucose tolerance and insulin sensitivity despite triacylglycerol accumulation in multiple tissues. To determine the molecular mechanisms for this phenotype, ATGL-deficient (ATGL ؊/؊ ) and wild-type mice were injected with saline or insulin (10 units/ kg, intraperitoneally), and then phosphorylation and activities of key insulin-signaling proteins were determined in insulin target tissues (liver, adipose tissue, and muscle). Insulin signaling and/or glucose transport was also evaluated in isolated adipocytes and skeletal muscle ex vivo. In ATGL ؊/؊ mice, insulinstimulated phosphatidylinositol 3-kinase and Akt activities as well as phosphorylation of critical residues of IRS1 (Tyr(P)-612) and Akt (Ser(P)-473) were increased in skeletal muscle in vivo. Insulin-stimulated phosphatidylinositol 3-kinase activity and total insulin receptor and insulin receptor substrate 1, but not other parameters, were also increased in white adipose tissue in vivo. In contrast, in vivo measures of insulin signaling were decreased in brown adipose tissue and liver. Interestingly, the enhanced components of insulin signaling identified in skeletal muscle and white adipose tissue in vivo and their expected downstream effects on glucose transport were not present ex vivo. ATGL deficiency altered intramyocellular lipids as well as serum factors known to influence insulin sensitivity. Thus, skeletal muscle, rather than other tissues, primarily contributes to enhanced insulin sensitivity in ATGL ؊/؊ mice in vivo despite triacylglycerol accumulation, and both local and systemic factors contribute to tissue-specific effects of global ATGL deficiency on insulin action. Triacylglycerols (TAGs)4 are the predominant form of energy storage in animals. The ability to store and release this energy in response to variable energy availability requires a carefully regulated balance between TAG synthesis and hydrolysis. In the setting of chronic energy excess, however, TAGs and other lipid metabolites accumulate in adipose tissue as well as in metabolically relevant non-adipose tissues where they have been proposed to contribute to cellular dysfunction via a process known as lipotoxicity (1-3). Indeed, intracellular TAG accumulation has been repeatedly associated with metabolic dysfunction, a relationship that is particularly strong for insulin resistance (1-3). Despite this strong association, however, intracellular TAG accumulation is not always associated with insulin resistance (4) and may even be associated with insulin sensitivity, as is the case with highly trained endurance athletes (the so-called "athlete paradox") (5). Thus, the contribution of intracellular TAGs and TAG metabolism per se to lipotoxicity remains controversial. What is clear is that lipid-induced insulin resistance is a major ...
Thyroid hormone (TH) controlled gene expression profiles have been studied in the tail, hind limb and brain tissues during TH-induced and spontaneous Xenopus laevis metamorphosis. Amplified cRNA probes mixed with a universal standard were hybridized to a set of 21,807-sense strand 60-mer oligonucleotides on each slide representing the entries in X. laevis UniGene Build 48. Most of the up-regulated genes in hind limb and brain are the same. This reflects in part the fact that the initial response to TH induction in both tissues is cell proliferation. A large number of up-regulated genes in the limb and brain programs encode common components of the cell cycle, DNA and RNA metabolism, transcription and translation. Notch is one of the few genes that is differentially expressed exclusively in the brain in the first 48 h of TH induction studied in these experiments. The TH-induced gene expression changes in the tail are different from the limb and brain programs. Distinct muscle and fibroblast programs were identified in the tail. Dying muscle fibers in tail (marked by active caspase-3) up-regulate a group of genes that include proteolytic enzymes. At the climax of metamorphosis, tail muscle down-regulates more than half of the genes that encode the glycolytic enzymes in the cytoplasm and the tricarboxylic acid pathway and all five complexes of the electron transport system in mitochondria. These changes in gene expression precede the activation of caspase-3. Some of these same energy metabolism-related genes are up-regulated in the limb and brain programs by TH. A prominent feature of the tail fibroblasts is the down-regulation of several collagen and other extra cellular matrix genes and the up-regulation of hydrolytic enzymes that are responsible for dissolving the notochord and resorbing the tail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.