Rapid development of bacterial resistance has led to an urgent need to find new druggable targets for antibiotics.In this context, residue-specific chemoproteomic approaches enable proteome-wide identification of binding sites for covalent inhibitors.D escribed here are easily synthesized isotopically labeled desthiobiotin azide (isoDTB) tags that shortened the chemoproteomic workflowa nd allowed an increased coverage of cysteines in bacterial systems.They were used to quantify 59 %o fa ll cysteines in essential proteins in Staphylococcus aureus and enabled the discovery of 88 cysteines that showed high reactivity,w hichc orrelates with functional importance.F urthermore,2 68 cysteines that are engaged by covalent ligands were identified. Inhibition of HMG-CoA synthase was verified and will allow addressing the bacterial mevalonate pathway through an ew target. Overall, ab road map of the bacterial cysteinome was obtained, which will facilitate the development of antibiotics with novel modesof-action.
Rapid development of bacterial resistance has led to an urgent need to find new druggable targets for antibiotics. In this context, residue‐specific chemoproteomic approaches enable proteome‐wide identification of binding sites for covalent inhibitors. Described here are easily synthesized isotopically labeled desthiobiotin azide (isoDTB) tags that shortened the chemoproteomic workflow and allowed an increased coverage of cysteines in bacterial systems. They were used to quantify 59 % of all cysteines in essential proteins in Staphylococcus aureus and enabled the discovery of 88 cysteines that showed high reactivity, which correlates with functional importance. Furthermore, 268 cysteines that are engaged by covalent ligands were identified. Inhibition of HMG‐CoA synthase was verified and will allow addressing the bacterial mevalonate pathway through a new target. Overall, a broad map of the bacterial cysteinome was obtained, which will facilitate the development of antibiotics with novel modes‐of‐action.
Targeted covalent inhibitors are powerful entities in drug discovery, but their application has so far mainly been limited to addressing cysteine residues. The development of cysteine-directed covalent inhibitors has largely profited from determining their proteome-wide selectivity using competitive residue-specific proteomics. Several probes have recently been described to monitor other amino acids using this technology and many more electrophiles exist to modify proteins. Nevertheless, a direct, proteome-wide comparison of the selectivity of diverse probes is still entirely missing. Here, we developed a completely unbiased workflow to analyse electrophile selectivity proteome-wide and applied it to directly compare 54 alkyne probes containing diverse reactive groups. In this way, we verified and newly identified probes to monitor a total of nine different amino acids as well as the N-terminus proteome-wide. This selection includes the first probes to globally monitor tryptophans, histidines and arginines as well as novel tailored probes for methionines, aspartates and glutamates.
<p><a>Targeted covalent inhibitors are powerful entities in drug discovery, but their application has so far mainly been limited to addressing cysteine residues. The development of cysteine-directed covalent inhibitors has largely profited from determining their proteome-wide selectivity using competitive residue-specific proteomics. Several probes have recently been described to monitor other amino acids using this technology and many more electrophiles exist to modify proteins. Nevertheless, a direct, proteome‑wide comparison of the selectivity of diverse probes is still entirely missing. Here, we developed a completely unbiased workflow to analyse electrophile selectivity proteome‑wide and applied it to directly compare 54 alkyne probes containing diverse reactive groups. In this way, we verified and newly identified probes to monitor a total of nine different amino acids as well as the <i>N</i>‑terminus proteome‑wide. This selection includes the first probes to globally monitor tryptophans, histidines and arginines as well as novel tailored probes for methionines, aspartates and glutamates.</a></p>
<p><a>Targeted covalent inhibitors are powerful entities in drug discovery, but their application has so far mainly been limited to addressing cysteine residues. The development of cysteine-directed covalent inhibitors has largely profited from determining their proteome-wide selectivity using competitive residue-specific proteomics. Several probes have recently been described to monitor other amino acids using this technology and many more electrophiles exist to modify proteins. Nevertheless, a direct, proteome‑wide comparison of the selectivity of diverse probes is still entirely missing. Here, we developed a completely unbiased workflow to analyse electrophile selectivity proteome‑wide and applied it to directly compare 54 alkyne probes containing diverse reactive groups. In this way, we verified and newly identified probes to monitor a total of nine different amino acids as well as the <i>N</i>‑terminus proteome‑wide. This selection includes the first probes to globally monitor tryptophans, histidines and arginines as well as novel tailored probes for methionines, aspartates and glutamates.</a></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.