Purpose
Big Data introduces high amounts and new forms of structured, unstructured and semi-structured data into the field of accounting and this requires alternative data management and reporting methods. Generating insights from these new data sources highlight the need for different and interactive forms of visualization in the field of visual analytics. Nonetheless, a considerable gap between the recommendations in research and the current usage in practice is evident. In order to understand and overcome this gap, a detailed analysis of the status quo as well as the identification of potential barriers for adoption is vital. The paper aims to discuss this issue.
Design/methodology/approach
A survey with 145 business accountants from Austrian companies from a wide array of business sectors and all hierarchy levels has been conducted. The survey is targeted toward the purpose of this study: identifying barriers, clustered as human-related and technological-related, as well as investigating current practice with respect to interactive visualization use for Big Data.
Findings
The lack of knowledge and experience regarding new visualization types and interaction techniques and the sole focus on Microsoft Excel as a visualization tool can be identified as the main barriers, while the use of multiple data sources and the gradual implementation of further software tools determine the first drivers of adoption.
Research limitations/implications
Due to the data collection with a standardized survey, there was no possibility of dealing with participants individually, which could lead to a misinterpretation of the given answers. Further, the sample population is Austrian, which might cause issues in terms of generalizing results to other geographical or cultural heritages.
Practical implications
The study shows that those knowledgeable and familiar with interactive Big Data visualizations indicate high perceived ease of use. It is, therefore, necessary to offer sufficient training as well as user-centered visualizations and technological support to further increase usage within the accounting profession.
Originality/value
A lot of research has been dedicated to the introduction of novel forms of interactive visualizations. However, little focus has been laid on the impact of these new tools for Big Data from a practitioner’s perspective and their needs.
The need for good visualization is increasing, as data volume and complexity expand. In order to work with high volumes of structured and unstructured data, visualizations, supporting the ability of humans to make perceptual inferences, are of the utmost importance. In this regard, a lot of interactive visualization techniques have been developed in recent years. However, little emphasis has been placed on the evaluation of their usability and, in particular, on design characteristics. This paper contributes to closing this research gap by measuring the effects of appropriate visualization use based on data and task characteristics. Further, we specifically test the feature of interaction as it has been said to be an essential component of Big Data visualizations but scarcely isolated as an independent variable in experimental research. Data collection for the large-scale quantitative experiment was done using crowdsourcing (Amazon Mechanical Turk). The results indicate that both, choosing an appropriate visualization based on task characteristics and using the feature of interaction, increase usability considerably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.