Endoglin is a transforming growth factor-beta (TGF-beta) binding protein expressed on the surface of endothelial cells. Loss-of-function mutations in the human endoglin gene ENG cause hereditary hemorrhagic telangiectasia (HHT1), a disease characterized by vascular malformations. Here it is shown that by gestational day 11.5, mice lacking endoglin die from defective vascular development. However, in contrast to mice lacking TGF-beta, vasculogenesis was unaffected. Loss of endoglin caused poor vascular smooth muscle development and arrested endothelial remodeling. These results demonstrate that endoglin is essential for angiogenesis and suggest a pathogenic mechanism for HHT1.
Elastin, the main component of the extracellular matrix of arteries, was thought to have a purely structural role. Disruption of elastin was believed to lead to dissection of arteries, but we showed that mutations in one allele encoding elastin cause a human disease in which arteries are blocked, namely, supravalvular aortic stenosis. Here we define the role of elastin in arterial development and disease by generating mice that lack elastin. These mice die of an obstructive arterial disease, which results from subendothelial cell proliferation and reorganization of smooth muscle. These cellular changes are similar to those seen in atherosclerosis. However, lack of elastin is not associated with endothelial damage, thrombosis or inflammation, which occur in models of atherosclerosis. Haemodynamic stress is not associated with arterial obstruction in these mice either, as the disease still occurred in arteries that were isolated in organ culture and therefore not subject to haemodynamic stress. Disruption of elastin is enough to induce subendothelial proliferation of smooth muscle and may contribute to obstructive arterial disease. Thus, elastin has an unanticipated regulatory function during arterial development, controlling proliferation of smooth muscle and stabilizing arterial structure.
Vascular proliferative diseases such as atherosclerosis and coronary restenosis are leading causes of morbidity and mortality in developed nations. Common features associated with these heterogeneous disorders involve phenotypic modulation and subsequent abnormal proliferation and migration of vascular smooth muscle cells into the arterial lumen, leading to neointimal formation and vascular stenosis. This fibrocellular response has largely been attributed to the release of multiple cytokines and growth factors by inflammatory cells. Previously, we demonstrated that the disruption of the elastin matrix leads to defective arterial morphogenesis. Here, we propose that elastin is a potent autocrine regulator of vascular smooth muscle cell activity and that this regulation is important for preventing fibrocellular pathology. Using vascular smooth muscle cells from mice lacking elastin(Eln-/-), we show that elastin induces actin stress fiber organization, inhibits proliferation, regulates migration and signals via a non-integrin, heterotrimeric G-protein-coupled pathway. In a porcine coronary model of restenosis, the therapeutic delivery of exogenous elastin to injured vessels in vivo significantly reduces neointimal formation. These findings indicate that elastin stabilizes the arterial structure by inducing a quiescent contractile state in vascular smooth muscle cells. Together, this work demonstrates that signaling pathways crucial for arterial morphogenesis can play an important role in the pathogenesis and treatment of vascular disease.
The mature circulatory system is comprised of two parallel, yet distinct, vascular networks that carry blood to and from the heart. Studies have suggested that endothelial tubes are specified as arteries and veins at the earliest stages of angiogenesis, before the onset of circulation. To understand the molecular basis for arterial-venous identity, we have focused our studies on a human vascular dysplasia, hereditary haemorrhagic telangiectasia (HHT), wherein arterial and venous beds fail to remain distinct. Genetic studies have demonstrated that HHT can be caused by loss-of-function mutations in the gene encoding activin receptor-like kinase-1 (ACVRL1; ref. 5). ACVRL1 encodes a type I receptor for the TGF-beta superfamily of growth factors. At the earliest stage of vascular development, mice lacking Acvrl1 develop large shunts between arteries and veins, downregulate arterial Efnb2 and fail to confine intravascular haematopoiesis to arteries. These mice die by mid-gestation with severe arteriovenous malformations resulting from fusion of major arteries and veins. The early loss of anatomical, molecular and functional distinctions between arteries and veins indicates that Acvrl1 is required for developing distinct arterial and venous vascular beds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.