Collagen can be adequately stabilized, using water soluble carbodiimides as protein cross-linking reagents, in the fabrication of corneal matrix substitutes for implantation. The simple cross-linking methodology would allow for easy fabrication of matrices for transplantation in centers where there is a shortage of corneas, or where there is need for temporary patches to repair perforations in emergency situations.
ABSTRACT.Purpose: To study the change in expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in the rabbit cornea and limbus following a penetrating, central corneal alkali burn. The influence of different cells on VEGF and VEGFR-2 expression was studied by excluding granulocytes from the wound area. Methods: Fourteen New Zealand white rabbits were subjected to a penetrating, 5-mm diameter, central corneal alkali burn in one eye under general anaesthesia. Seven of the rabbits were given injections of fucoidin for 36 hours. The rabbits were killed after 36 hours and the corneas were excised with a sclera rim and prepared for immunohistochemistry. Results: Both VEGF and VEGFR-2 are strongly expressed in the frontline of repopulating epithelial, stromal and endothelial cells during wound healing, irrespective of granulocyte presence. Vascular endothelial cells express VEGF strongly after injury, but only in the presence of granulocytes. Conclusion: Corneal neovascularization requires the presence of granulocytes to stimulate vascular endothelial cells. During wound healing in this area, VEGF is a factor that stimulates proliferation and migration and that is not influenced by granulocytes.
Apoptosis appears to be a mechanism of corneal cell death after UVR. The 310-nm UVR caused more extensive damage to the corneal stroma and endothelium than did the 280-nm UVR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.