Mitochondrial dysfunction affects cellular energy metabolism, but less is known about the consequences for cytoplasmic biosynthetic reactions. We report that mtDNA replication disorders caused by TWINKLE mutations-mitochondrial myopathy (MM) and infantile onset spinocerebellar ataxia (IOSCA)-remodel cellular dNTP pools in mice. MM muscle shows tissue-specific induction of the mitochondrial folate cycle, purine metabolism, and imbalanced and increased dNTP pools, consistent with progressive mtDNA mutagenesis. IOSCA-TWINKLE is predicted to hydrolyze dNTPs, consistent with low dNTP pools and mtDNA depletion in the disease. MM muscle also modifies the cytoplasmic one-carbon cycle, transsulfuration, and methylation, as well as increases glucose uptake and its utilization for de novo serine and glutathione biosynthesis. Our evidence indicates that the mitochondrial replication machinery communicates with cytoplasmic dNTP pools and that upregulation of glutathione synthesis through glucose-driven de novo serine biosynthesis contributes to the metabolic stress response. These results are important for disorders with primary or secondary mtDNA instability and offer targets for metabolic therapy.
Cytosolic thymidine kinase 1, TK1, is a well known cell-cycleregulated enzyme of importance in nucleotide metabolism as well as an activator of antiviral and anticancer drugs such as 3-azido-3-deoxythymidine (AZT). We have now determined the structures of the TK1 family, the human and Ureaplasma urealyticum enzymes, in complex with the feedback inhibitor dTTP. The TK1s have a tetrameric structure in which each subunit contains an ␣͞-domain that is similar to ATPase domains of members of the RecA structural family and a domain containing a structural zinc. The zinc ion connects -structures at the root of a -ribbon that forms a stem that widens to a lasso-type loop. The thymidine of dTTP is hydrogen-bonded to main-chain atoms predominantly coming from the lasso loop. This binding is in contrast to other deoxyribonucleoside kinases where specific interactions occur with side chains. The TK1 structure differs fundamentally from the structures of the other deoxyribonucleoside kinases, indicating a different evolutionary origin.crystal structures ͉ deoxynucleotide metabolism ͉ prodrug activation
Based on amino acid sequence information from purified mitochondrial thymidine kinase (TK2), a cDNA of 1930 bp was cloned, containing an open reading frame encoding 232 amino acid residues starting with the N-terminal sequence determined from the native human protein preparation. Northern blot analysis with the cDNA coding region demonstrated several TK2 mRNAs, with 2 and 4 kb forms present in many tissues. We also characterised N-terminally truncated (starting at position 18) human TK2 with pharmacologically important antiviral and cytostatic nucleoside analogues. Results were highly similar to those with the native TK2 preparation. The anti-leukaemic drug arabinosyl cytosine is phosphorylated. The antitumour drug difluorodeoxycytidine and its metabolite difluorodeoxyuridine are good substrates, with K m values of 66 and 29 W WM, respectively, and a relative V m x of 0.6 compared to that of thymidine. Negative cooperativity was found with thymidine and the anti-HIV drug 3P-azidothymidine, but the reaction followed Michaelis-Menten kinetics with deoxycytidine, arabinosyl cytosine, and arabinosyl thymine. The results demonstrate a broad substrate specificity and complex kinetics, and suggest a role for TK2 in the activation of chemotherapeutic nucleoside analogues.z 1999 Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.