This paper introduces a new approach to building distributedmemory graph analytics systems that exploits heterogeneity in processor types (CPU and GPU), partitioning policies, and programming models. The key to this approach is Gluon, a communication-optimizing substrate. Programmers write applications in a shared-memory programming system of their choice and interface these applications with Gluon using a lightweight API. Gluon enables these programs to run on heterogeneous clusters and optimizes communication in a novel way by exploiting structural and temporal invariants of graph partitioning policies. To demonstrate Gluon's ability to support different programming models, we interfaced Gluon with the Galois and Ligra shared-memory graph analytics systems to produce distributed-memory versions of these systems named D-Galois and D-Ligra, respectively. To demonstrate Gluon's ability to support heterogeneous processors, we interfaced Gluon with IrGL, a state-of-the-art single-GPU system for * Both authors contributed equally.
This paper introduces a new approach to building distributedmemory graph analytics systems that exploits heterogeneity in processor types (CPU and GPU), partitioning policies, and programming models. The key to this approach is Gluon, a communication-optimizing substrate. Programmers write applications in a shared-memory programming system of their choice and interface these applications with Gluon using a lightweight API. Gluon enables these programs to run on heterogeneous clusters and optimizes communication in a novel way by exploiting structural and temporal invariants of graph partitioning policies. To demonstrate Gluon's ability to support different programming models, we interfaced Gluon with the Galois and Ligra shared-memory graph analytics systems to produce distributed-memory versions of these systems named D-Galois and D-Ligra, respectively. To demonstrate Gluon's ability to support heterogeneous processors, we interfaced Gluon with IrGL, a state-of-the-art single-GPU system for * Both authors contributed equally.
Intel Optane DC Persistent Memory (Optane PMM) is a new kind of byte-addressable memory with higher density and lower cost than DRAM. This enables the design of affordable systems that support up to 6TB of randomly accessible memory. In this paper, we present key runtime and algorithmic principles to consider when performing graph analytics on extreme-scale graphs on Optane PMM and highlight principles that can apply to graph analytics on all large-memory platforms. To demonstrate the importance of these principles, we evaluate four existing shared-memory graph frameworks and one out-of-core graph framework on large real-world graphs using a machine with 6TB of Optane PMM. Our results show that frameworks using the runtime and algorithmic principles advocated in this paper (i) perform significantly better than the others and (ii) are competitive with graph analytics frameworks running on production clusters.
We present Min-Rounds BC (MRBC), a distributed-memory algorithm in the CONGEST model that computes the betweenness centrality (BC) of every vertex in a directed unweighted n-node graph in O (n) rounds. Min-Rounds BC also computes all-pairs-shortest-paths (APSP) in such graphs. It improves the number of rounds by at least a constant factor over previous results for unweighted directed APSP and for unweighted BC, both directed and undirected. We implemented MRBC in D-Galois, a state-of-the-art distributed graph analytics system, incorporated additional optimizations enabled by the D-Galois model, and evaluated its performance on a production cluster with up to 256 hosts using power-law and road networks. Compared to the BC algorithm of Brandes, on average, MRBC reduces the number of rounds by 14.0× and the communication time by 2.8× for the graphs in our test suite. As a result, MRBC is 2.1× faster on average than Brandes BC for real-world web-crawls on 256 hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.