Monitoring the occurrence and trends of microplastic contamination in the marine environment is key to establish microplastic (MP) data baselines, to work out policy mitigation measures, and to assess the effectiveness of waste regulations. To establish MP contamination baselines in the marine environment, marine biota species can be selected as monitoring matrices to track plastic pollution in the environment. The aim of this work was to evaluate the feasibility of biomonitoring MPs in fish gastrointestinal tract (GIT). A selection of suitable fish species was performed, based on species distribution, sampling effort, commercial value of species, sustainable development of fish populations, migration behaviour, and scientific evidence for occurrence of MPs in the fish GIT. Sampling and MP extraction protocols were developed and validated on fish GIT samples acquired in the Southern North Sea. The fish species selection protocol enabled the selection of ubiquitous distributed and non-endangered fish species relevant for MP monitoring in the North Sea. The fish GIT sampling protocol considered background contamination measures and sampling fillet as procedural blanks. Advantages and disadvantages of onboard dissection were discussed. The MPs extraction protocol was based on matrix digestion, density separation, and Nile red staining of particles followed by fluorescent microscopy observation. The confirmation of MPs identification and the analysis of the polymer composition was done using micro-Fourier transform infrared (μFTIR) spectroscopy. The MP analysis indicated a low number of MPs in the fish GIT. The mean number of particles per single fish GIT was 0.48 ± 0.81 (Nile red staining observations) to 0.26 ± 0.64 (corrected for background contamination). A power analysis (sampling effort) indicated that to detect significant differences, in a balanced-ANOVA type of analysis, between species and/or sampling areas, the sample size would require a minimum of 109 up to 370 individual fish. The feasibility of MP biomonitoring in fish GIT was assessed by a SWOT-analysis, which indicated that fish GIT is a suitable matrix for biomonitoring of MPs, but that the large number of samples needed to identify significant differences can be a major drawback. A potential implementation strategy for MP biomonitoring within Europe was suggested.
Marine litter is recognized as a global environmental concern. Seafloor litter can provide important information to help assess the status of the marine ecosystem and is relatively easy to collect on a regular basis. The Belgian fisheries area covers different parts of the OSPAR Greater North Sea region and the Celtic Seas. In these regions, seafloor litter data were gathered by quantifying the litter items caught in the trawl net during two different fisheries surveys to investigate litter distribution on both regional and local scales. In the international beam trawl survey (BTS), covering essentially the OSPAR Greater North Sea and Celtic Seas, an average of 2.2 ± 0.05 items.ha-1 were caught with a median of 1.4 items.ha-1. In the environmental monitoring survey (EMS) only the Belgian part of the North Sea was covered and a smaller cod-end mesh size was used, resulting in 12.7 ± 1.7 litter items.ha-1 in the coastal zone (< 12 nm) and 2.8 ± 0.2 items.ha-1 in the more offshore zone (> 12 nm). In both surveys plastic items were predominant, representing up to 88% of the collected litter in the Belgian part of the North Sea. The impact of human activities at sea such as fisheries, sand extraction, wind farms and dredge disposal was investigated. A significant correlation was found between fishing activities and the amount of litter registered in the Belgian part of the North Sea, but not for the OSPAR Greater North Sea and Celtic Seas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.