The recently extinct (ca. 1768) Steller's sea cow (Hydrodamalis gigas) was a large, edentulous North Pacific sirenian. The phylogenetic affinities of this taxon to other members of this clade, living and extinct, are uncertain based on previous morphological and molecular studies. We employed hybridization capture methods and second generation sequencing technology to obtain >30kb of exon sequences from 26 nuclear genes for both H. gigas and Dugong dugon. We also obtained complete coding sequences for the tooth-related enamelin (ENAM) gene. Hybridization probes designed using dugong and manatee sequences were both highly effective in retrieving sequences from H. gigas (mean=98.8% coverage), as were more divergent probes for regions of ENAM (99.0% coverage) that were designed exclusively from a proboscidean (African elephant) and a hyracoid (Cape hyrax). New sequences were combined with available sequences for representatives of all other afrotherian orders. We also expanded a previously published morphological matrix for living and fossil Sirenia by adding both new taxa and nine new postcranial characters. Maximum likelihood and parsimony analyses of the molecular data provide robust support for an association of H. gigas and D. dugon to the exclusion of living trichechids (manatees). Parsimony analyses of the morphological data also support the inclusion of H. gigas in Dugongidae with D. dugon and fossil dugongids. Timetree analyses based on calibration density approaches with hard- and soft-bounded constraints suggest that H. gigas and D. dugon diverged in the Oligocene and that crown sirenians last shared a common ancestor in the Eocene. The coding sequence for the ENAM gene in H. gigas does not contain frameshift mutations or stop codons, but there is a transversion mutation (AG to CG) in the acceptor splice site of intron 2. This disruption in the edentulous Steller's sea cow is consistent with previous studies that have documented inactivating mutations in tooth-specific loci of a variety of edentulous and enamelless vertebrates including birds, turtles, aardvarks, pangolins, xenarthrans, and baleen whales. Further, branch-site dN/dS analyses provide evidence for positive selection in ENAM on the stem dugongid branch where extensive tooth reduction occurred, followed by neutral evolution on the Hydrodamalis branch. Finally, we present a synthetic evolutionary tree for living and fossil sirenians showing several key innovations in the history of this clade including character state changes that parallel those that occurred in the evolutionary history of cetaceans.
The Kommandorskiye Islands population of Steller's sea cow (Hydrodamalis gigas) was extirpated ca 1768 CE. Until now, Steller's sea cow was thought to be restricted in historic times to Bering and Copper Islands, Russia, with other records in the last millennium from the western Aleutian Islands. However, Steller's sea cow bone has been obtained by the authors from St Lawrence Island, Alaska, which is significantly further north. Bone identity was verified using analysis of mitochondrial DNA. 800-920 CE). The samples date from close to the beginning of the mediaeval warm period, which could indicate that the population at St Lawrence Island was driven to extinction by climate change. A warming of the climate in the area may have changed the availability of kelp; alternatively or in addition, the animals may have been driven to extinction by the expansion of the Inuit from the Bering Strait region, possibly due to opening waterways, maybe following bowhead whales (Balaena mysticetus), or searching for iron and copper. This study provides evidence for a previously unknown population of sea cows in the North Pacific within the past 1000 years and a second Steller's sea cow extirpation event in recent history.
In the US, marine mammals are protected by the Endangered Species Act (ESA) and the Marine Mammal Protection Act (MMPA). Most of these species are listed by Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and thus international trade in their products is restricted. Therefore, commercial sale of unfossilized marine mammal bone is largely prohibited. Sale of Steller's sea cow (Hydrodamalis gigas) bone is legal, however, since the animals have been extinct since 1768. The current study outlines a simple test that can identify bone which is bona fide Steller's sea cow-and thus legal to sell. The test uses a segment of the D-loop of the mitochondrion, which has the power to exclude samples which are not specifically H. gigas or a Sirenian relative. The test also includes a reliable method to extract DNA from bone and amplify it using Polymerase Chain Reaction (PCR). Extracted DNA was sequenced to verify that only manatees, dugongs, elephants, and their relatives produced a positive result. Using this test, products being sold commercially as legal "mermaid ivory" (Steller sea cow bone) were found to actually come from gray whale (Eschrichtius robustus), pantropical spotted dolphin (Stenella attenuata), and white-beaked dolphin (Lagenorhynchus albirostris) bone. This finding indicates that government agencies should monitor bones being sold as "mermaid ivory" because protected species are being illegally traded under the guise of being legal Steller's sea cow bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.