Bayesian change-point detection, with latent variable models, allows to perform segmentation of high-dimensional time-series with heterogeneous statistical nature. We assume that change-points lie on a lower-dimensional manifold where we aim to infer a discrete representation via subsets of latent variables. For this particular model, full inference is computationally unfeasible and pseudo-observations based on point-estimates of latent variables are used instead. However, if their estimation is not certain enough, change-point detection gets affected. To circumvent this problem, we propose a multinomial sampling methodology that improves the detection rate and reduces the delay while keeping complexity stable and inference analytically tractable. Our experiments show results that outperform the baseline method and we also provide an example oriented to a human behavioral study.
Public health professionals have raised concerns that the social and physical distancing measures implemented in response to the Covid-19 pandemic may negatively impact health in other areas, via both decreased physical activity and increased social isolation. Here, we investigated whether increased engagement with digital social tools may help mitigate effects of enforced isolation on physical activity and mood, in a naturalistic study of at-risk individuals. Passively sensed smartphone app use and actigraphy data, collected from a sample of psychiatric outpatients both before and during imposition of strict lockdown conditions (N=163), were analysed using Gaussian graphical models: a form of network analysis which gives insight into the predictive relationships between measures across timepoints. Within-individuals, we found evidence of a positive predictive path between digital social engagement, general smartphone use, and physical activity - selectively under lockdown conditions. Further, we observed a positive relationship between social media use and total daily steps across individuals during (but not prior to) lockdown. We interpret these findings in terms of individuals using these digital tools to harness online social support structures, which may help guard against negative effects of in-person social deprivation and other pandemic-related stress. Monitoring of these measures is low burden and unintrusive and therefore, given appropriate consent, could potentially help identify individuals who are failing to engage this mechanism, providing a route to early intervention in this and other vulnerable populations.
BackgroundWe have defined a project to develop a mobile app that continually records smartphone parameters which may help define the Eastern Cooperative Oncology Group performance status (ECOG-PS) and the health-related quality of life (HRQoL), without interaction with patients or professionals. This project is divided into 3 phases. Here we describe phase 1. The objective of this phase was to develop the app and assess its usability concerning patient characteristics, acceptability, and satisfaction.MethodsThe app eB2-ECOG was developed and installed in the smartphone of cancer patients who will be followed for six months. Criteria inclusion were: age over 18-year-old; diagnosed with unresectable or metastatic lung cancer, gastrointestinal stromal tumor, sarcoma, or head and neck cancer; under systemic anticancer therapies; and possession of a Smartphone. The app will collect passive and active data from the patients while healthcare professionals will evaluate the ECOG-PS and HRQoL through conventional tools. Acceptability was assessed during the follow-up. Patients answered a satisfaction survey in the app between 3-6 months from their inclusion.ResultsThe app developed provides a system for continuously collecting, merging, and processing data related to patient’s health and physical activity. It provides a transparent capture service based on all the available data of a patient. Currently, 106 patients have been recruited. A total of 36 patients were excluded, most of them (21/36) due to technological reasons. We assessed 69 patients (53 lung cancer, 8 gastrointestinal stromal tumors, 5 sarcomas, and 3 head and neck cancer). Concerning app satisfaction, 70.4% (20/27) of patients found the app intuitive and easy to use, and 51.9% (17/27) of them said that the app helped them to improve and handle their problems better. Overall, 17 out of 27 patients [62.9%] were satisfied with the app, and 14 of them [51.8%] would recommend the app to other patients.ConclusionsWe observed that the app’s acceptability and satisfaction were good, which is essential for the continuity of the project. In the subsequent phases, we will develop predictive models based on the collected information during this phase. We will validate the method and analyze the sensitivity of the automated results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.