We develop a global variable substitution method that reduces n-variable monomials in combinatorial optimization problems to equivalent instances with monomials in fewer variables. We apply this technique to 3-SAT and analyze the optimal quantum unitary circuit depth needed to solve the reduced problem using the quantum approximate optimization algorithm. For benchmark 3-SAT problems, we find that the upper bound of the unitary circuit depth is smaller when the problem is formulated as a product and uses the substitution method to decompose gates than when the problem is written in the linear formulation, which requires no decomposition.
The quantum approximate optimization algorithm (QAOA) is a promising method of solving combinatorial optimization problems using quantum computing. QAOA on the MaxCut problem has been studied extensively on specific families of graphs, however, little is known about the algorithm on arbitrary graphs. We evaluate the performance of QAOA at depths at most three on the MaxCut problem for all connected non-isomorphic graphs with at most eight vertices and analyze how graph structure affects QAOA performance. Some of the strongest predictors of QAOA success are the existence of odd-cycles and the amount of symmetry in the graph. The data generated from these studies are shared in a publicly-accessible database to serve as a benchmark for QAOA calculations and experiments. Knowing the relationship between structure and performance can allow us to identify classes of combinatorial problems that are likely to exhibit a quantum advantage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.