New zircon and apatite fission-track ages obtained on samples from all lithotectonic units exposed on Naxos Island are presented. Zircon ages of the exhumed metamorphic rocks range from 25.2 to 9.3 Ma and from 13.0 to 6.4 Ma for apatite. Zircon track-length analysis distinguishes partial overprinting of an earlier event (M1) in the south. Northwards no overprint is seen and the ages there represent rapid exhumation since c. 12 Ma. Both zircon and apatite ages are slightly older toward the north of the island probably due to variation of the geotherm in the proximity of the fault.Zircon fission-track ages of the granodiorite range from 13.7 to 12.2 Ma are statistically identical to previously determined U–Pb ages. Apatite fission-track ages however, yield a younging trend from south to north from 12.9 to 9.0 Ma. This could be due to differential depth of emplacement and/or to differential exhumation during tectonic unroofing by a top-to-the north detachment.Fission-track ages on detrital grains in Lower Miocene sediments indicate a source not identified within the present outcropping rocks of Naxos. Ages on boulders and grains in the Middle to Upper Miocene sediments point to rapid erosion until about 8.5–7 Ma.
New petrological and geochronological data are presented on high-grade ortho-and paragneisses from northwestern Ghana, forming part of the Paleoproterozoic (2.25-2.00 Ga) West African Craton. The study area is located in the interference zone between N-S and NE-SW-trending craton-scale shear zones, formed during the Eburnean orogeny (2.15-2.00 Ga). High-grade metamorphic domains are separated from low-grade greenstone belts by high-strain zones, including early thrusts, extensional detachments and late-stage strike-slip shear zones. Paragneisses sporadically preserve high-pressure, low-temperature (HP-LT) relicts, formed at the transition between the blueschist facies and the epidote-amphibolite sub-facies (10.0-14.0 kbar, 520-600°C), and represent a low (~15°C km À1 ) apparent geothermal gradient. Migmatites record metamorphic conditions at the amphibolite-granulite facies transition. They reveal a clockwise pressure-temperature-time (P-T-t) path characterized by melting at pressures over 10.0 kbar, followed by decompression and heating to peak temperatures of 750°C at 5.0-8.0 kbar, which fit a 30°C km À1 apparent geotherm. A regional amphibolite facies metamorphic overprint is recorded by rocks that followed a clockwise P-T-t path, characterized by peak metamorphic conditions of 7.0-10.0 kbar at 550-680°C, which match a 20-25°C km À1 apparent geotherm. These P-T conditions were reached after prograde burial and heating for some rock units, and after decompression and heating for others. The timing of anatexis and of the amphibolite facies metamorphic overprint is constrained by in-situ U-Pb dating of monazite crystallization at 2138 AE 7 and 2130 AE 7 Ma respectively. The new data set challenges the interpretation that metamorphic breaks in the West African Craton are due to diachronous Birimian 'basins' overlying a gneissic basement. It suggests that the lower crust was exhumed along reverse, normal and transcurrent shear zones and juxtaposed against shallow crustal slices during the Eburnean orogeny. The craton in NW Ghana is made of distinct fragments with contrasting tectono-metamorphic histories. The range of metamorphic conditions and the sharp lateral metamorphic gradients are inconsistent with 'hot orogeny' models proposed for many Precambrian provinces. These findings shed new light on the geodynamic setting of craton assembly and stabilization in the Paleoproterozoic. It is suggested that the metamorphic record of the West African Craton is characteristic of Paleoproterozoic plate tectonics and illustrates a transition between Archean and Phanerozoic orogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.