Summary The amount of genetic variation discovered in human populations is growing rapidly leading to challenging computational tasks, such as variant calling. Standard methods for addressing this problem include read mapping, a computationally expensive procedure; thus, mapping-free tools have been proposed in recent years. These tools focus on isolated, biallelic SNPs, providing limited support for multi-allelic SNPs and short insertions and deletions of nucleotides (indels). Here we introduce MALVA, a mapping-free method to genotype an individual from a sample of reads. MALVA is the first mapping-free tool able to genotype multi-allelic SNPs and indels, even in high-density genomic regions, and to effectively handle a huge number of variants. MALVA requires one order of magnitude less time to genotype a donor than alignment-based pipelines, providing similar accuracy. Remarkably, on indels, MALVA provides even better results than the most widely adopted variant discovery tools.
Motivation The latest advances in cancer sequencing, and the availability of a wide range of methods to infer the evolutionary history of tumors, have made it important to evaluate, reconcile and cluster different tumor phylogenies. Recently, several notions of distance or similarities have been proposed in the literature, but none of them has emerged as the golden standard. Moreover, none of the known similarity measures is able to manage mutations occurring multiple times in the tree, a circumstance often occurring in real cases. Results To overcome these limitations, in this paper we propose MP3, the first similarity measure for tumor phylogenies able to effectively manage cases where multiple mutations can occur at the same time and mutations can occur multiple times. Moreover, a comparison of MP3 with other measures shows that it is able to classify correctly similar and dissimilar trees, both on simulated and on real data. Availability An open source implementation of MP3 is publicly available at https://github.com/AlgoLab/mp3treesim. Supplementary information Supplementary data are available at Bioinformatics online.
BackgroundWhile the reconstruction of transcripts from a sample of RNA-Seq data is a computationally expensive and complicated task, the detection of splicing events from RNA-Seq data and a gene annotation is computationally feasible. This latter task, which is adequate for many transcriptome analyses, is usually achieved by aligning the reads to a reference genome, followed by comparing the alignments with a gene annotation, often implicitly represented by a graph: the splicing graph.ResultsWe present ASGAL (Alternative Splicing Graph ALigner): a tool for mapping RNA-Seq data to the splicing graph, with the specific goal of detecting novel splicing events, involving either annotated or unannotated splice sites. ASGAL takes as input the annotated transcripts of a gene and a RNA-Seq sample, and computes (1) the spliced alignments of each read in input, and (2) a list of novel events with respect to the gene annotation.ConclusionsAn experimental analysis shows that ASGAL allows to enrich the annotation with novel alternative splicing events even when genes in an experiment express at most one isoform. Compared with other tools which use the spliced alignment of reads against a reference genome for differential analysis, ASGAL better predicts events that use splice sites which are novel with respect to a splicing graph, showing a higher accuracy. To the best of our knowledge, ASGAL is the first tool that detects novel alternative splicing events by directly aligning reads to a splicing graph.AvailabilitySource code, documentation, and data are available for download at http://asgal.algolab.eu.
Background: While the reconstruction of transcripts from a sample of RNA-Seq data is a computationally expensive and complicated task, the detection of splicing events from RNA-Seq data and a gene annotation is computationally feasible. The latter task, which is adequate for many transcriptome analyses, is usually achieved by aligning the reads to a reference genome, followed by comparing the alignments with a gene annotation, often implicitly represented by a graph: the splicing graph. Results: We present ASGAL (Alternative Splicing Graph ALigner): a tool for mapping RNA-Seq data to the splicing graph, with the main goal of detecting novel alternative splicing events. ASGAL receives in input the annotated transcripts of a gene and an RNA-Seq sample, and it computes (1) the spliced alignments of each read, and (2) a list of novel events with respect to the gene annotation.Conclusions: An experimental analysis shows that, by aligning reads directly to the splicing graph, ASGAL better predicts alternative splicing events when compared to tools requiring spliced alignments of the RNA-Seq data to a reference genome. To the best of our knowledge, ASGAL is the first tool that detects novel alternative splicing events by directly aligning reads to a splicing graph. Availability: Source code, documentation, and data are available for download at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.