New dicationic imidazolium-based ionic liquids (ILs) were synthesized, characterized and tested in regards to cytotoxicity and antimicrobial activity. Insertion of a new cationic head and use of organic anions increased the biocompatibility of the ILs developed. IC 50 (concentration necessary to inhibit 50% of enzymatic activity) values obtained were considerably higher than those described for monocationic ILs, which indicates an improvement in cytocompatibility. Antimicrobial activity against bacterial species of clinical relevance in wounds and the oral environment was tested. The results showed that ILs were effective in inhibiting bacterial growth even below the minimum inhibitory concentration (MIC). It was observed that structural features that confer higher hydrophobicity to ILs decreased both the IC 50 and MIC simultaneously. However, it was possible to establish an equilibrium between those two effects, which gives the safe range of concentrations that ILs can be employed. The results demonstrated that the dicationic-imidazolium-based ILs synthesized may constitute a potent strategy for applications requiring non-toxic materials exhibiting antimicrobial activity.
Calcium phosphate fillers have been shown to increase cement osteoconductivity, but have caused drawbacks in cement properties. Hydroxyapatite and Brushite were introduced in an acrylic two-solution cement at varying concentrations. Novel composite bone cements were developed and characterized using rheology, injectability, and mechanical tests. It was hypothesized that the ample swelling time allowed by the premixed two-solution cement would enable thorough dispersion of the additives in the solutions, resulting in no detrimental effects after polymerization. The addition of Hydroxyapatite and Brushite both caused an increase in cement viscosity; however, these cements exhibited high shear-thinning, which facilitated injection. In gel point studies, the composite cements showed no detectable change in gel point time compared to an all-acrylic control cement. Hydroxyapatite and Brushite composite cements were observed to have high mechanical strengths even at high loads of calcium phosphate fillers. These cements showed an average compressive strength of 85 MPa and flexural strength of 65 MPa. A calcium phosphate-containing cement exhibiting a combination of high viscosity, pseudoplasticity and high mechanical strength can provide the essential bioactivity factor for osseointegration without sacrificing load-bearing capability.
Coated TiO2 nanoparticles by dicationic imidazolium-based ionic liquids (ILs) were prepared and studied by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and scanning electron microscopy (SEM). Three ILs with different hydrophobicity degrees and structural characteristics were used (IL-1, IL-2, and IL-3). The interaction between IL molecules and the TiO2 surface was analyzed in both solid state and in solution. The physical and chemical properties of coated nanoparticles (TiO2 + IL-1, TiO2 + IL-2, and TiO2 + IL-3) were compared to pure materials (TiO2, IL-1, IL-2, and IL-3) in order to evaluate the interaction between both components. Thermal behavior, diffraction pattern, and morphologic characteristics were evaluated in the solid state. It was observed that all mixtures (TiO2 + IL) showed different behavior from that detected for pure substances, which is an evidence of film formation. DLS experiments were conducted to determine film thickness on the TiO2 surface comparing the size (hydrodynamic radius, Rh) of pure TiO2 with coated nanoparticles (TiO2 + IL). Results showed the thickness of the film increased with hydrophobicity of the IL compound. TEM images support this observation. Finally, X-ray diffraction patterns showed that, in coated samples, no structural changes in TiO2 diffraction peaks were observed, which is related to the maintenance of the crystalline structure. On the contrary, ILs showed different diffraction patterns, which confirms the hypothesis of interactions happening between IL and the TiO2 nanoparticles surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.