We model an overdispersed count as a dependent measurement, by means of the Negative Binomial distribution. We consider quantitative regressors that are fixed by design. The expectation of the dependent variable is assumed to be a known function of a linear combination involving regressors and their coefficients. In the NB1-parametrization of the negative binomial distribution, the variance is a linear function of the expectation, inflated by the dispersion parameter, and not a generalized linear model. We apply a general result of Bradley and Gart (1962) to derive weak consistency and asymptotic normality of the maximum likelihood estimator for all parameters. To this end, we show (i) how to bound the logarithmic density by a function that is linear in the outcome of the dependent variable, independently of the parameter. Furthermore (ii) the positive definiteness of the matrix related to the Fisher information is shown with the Cauchy-Schwarz inequality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.