This article studies the Type I error, false positive rates, and power of four versions of the Lagrange multiplier test to detect measurement noninvariance in item response theory (IRT) models for binary data under model misspecification. The tests considered are the Lagrange multiplier test computed with the Hessian and cross-product approach, the generalized Lagrange multiplier test and the generalized jackknife score test. The two model misspecifications are those of local dependence among items and nonnormal distribution of the latent variable. The power of the tests is computed in two ways, empirically through Monte Carlo simulation methods and asymptotically, using the asymptotic distribution of each test under the alternative hypothesis. The performance of these tests is evaluated by means of a simulation study. The results highlight that, under mild model misspecification, all tests have good performance while, under strong model misspecification, the tests performance deteriorates, especially for false positive rates under local dependence and power for small sample size under misspecification of the latent variable distribution. In general, the Lagrange multiplier test computed with the Hessian approach and the generalized Lagrange multiplier test have better performance in terms of false positive rates while the Lagrange multiplier test computed with the cross-product approach has the highest power for small sample sizes. The asymptotic power turns out to be a good alternative to the classic empirical power because it is less time consuming. The Lagrange tests studied here have been also applied to a real data set.
This article studies the power of the Lagrange Multiplier Test and the Generalized Lagrange Multiplier Test to detect measurement non-invariance in Item Response Theory (IRT) models for binary data. We study the performance of these two tests under correct model specification and incorrect distribution of the latent variable. The asymptotic distribution of each test under the alternative hypothesis depends on a noncentrality parameter that is used to compute the power. We present two different procedures to compute the noncentrality parameter and consequently the power of the tests. The performance of the two methods is evaluated through a simulation study. They turn out to be very similar to the classic empirical power but less time consuming. Moreover, the results highlight that the Lagrange Multiplier Test is more powerful than the Generalized Lagrange Multiplier Test to detect measurement noninvariance under all simulation conditions.
This paper introduces the generalized Hausman test as a novel method for detecting non-normality of the latent variable distribution of unidimensional Item Response Theory (IRT) models for binary data. The test utilizes the pairwise maximum likelihood estimator obtained for the parameters of the classical two-parameter IRT model, which assumes normality of the latent variable, and the quasi-maximum likelihood estimator obtained under a semi-nonparametric framework, allowing for a more flexible distribution of the latent variable. The performance of the generalized Hausman test is evaluated through a simulation study and it is compared with the likelihood-ratio and the M 2 test statistics. Additionally, various information criteria are computed. The simulation results show that the generalized Hausman test outperforms the other tests under most conditions. However, the results obtained from the information criteria are somewhat contradictory under certain conditions, suggesting a need for further investigation and interpretation.
This paper focuses on a comparative evaluation of the most common and modern methods for text classification, including the recent deep learning strategies and ensemble methods. The study is motivated by a challenging real data problem, characterized by high-dimensional and extremely sparse data, deriving from incoming calls to the customer care of an Italian phone company. We will show that deep learning outperforms many classical (shallow) strategies but the combination of shallow and deep learning methods in a unique ensemble classifier may improve the robustness and the accuracy of "single" classification methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.