The human gut is the largest organ with immune function in our body, responsible for regulating the homeostasis of the intestinal barrier. A diverse, complex and dynamic population of microorganisms, called microbiota, which exert a significant impact on the host during homeostasis and disease, supports this role. In fact, intestinal bacteria maintain immune and metabolic homeostasis, protecting our organism against pathogens. The development of numerous inflammatory disorders and infections has been linked to altered gut bacterial composition or dysbiosis. Multiple factors contribute to the establishment of the human gut microbiota. For instance, diet is considered as one of the many drivers in shaping the gut microbiota across the lifetime. By contrast, alcohol is one of the many factors that disrupt the proper functioning of the gut, leading to a disruption of the intestinal barrier integrity that increases the permeability of the mucosa, with the final result of a disrupted mucosal immunity. This damage to the permeability of the intestinal membrane allows bacteria and their components to enter the blood tissue, reaching other organs such as the liver or the brain. Although chronic heavy drinking has harmful effects on the immune system cells at the systemic level, this review focuses on the effect produced on gut, brain and liver, because of their significance in the link between alcohol consumption, gut microbiota and the immune system.
Alcohol is part of the usual diet of millions of individuals worldwide. However, not all individuals who drink alcohol experience the same effects, nor will everyone develop an alcohol use disorder. Here we propose that the intestinal microbiota (IMB) helps explain the different consumption patterns of alcohol among individuals. 507 humans participated in this study and alcohol consumption and IMB composition were analyzed. On the other hand, in 80 adult male Wistar rats, behavioral tests, alcohol intoxication, fecal transplantation, administration of antibiotics and collection of fecal samples were performed. For identification and relative quantification of bacterial taxa was used the bacterial 16 S ribosomal RNA gene. In humans, we found that heavy episodic drinking is associated with a specific stool type phenotype (type 1, according to Bristol Stool Scale; p < 0.05) and with an increase in the abundance of Actinobacteria (p < 0.05). Next, using rats, we demonstrate that the transfer of IMB from alcohol-intoxicated animals causes an increase in voluntary alcohol consumption in transplant-recipient animals (p < 0.001). The relative quantification data indicate that the genus Porphyromonas could be associated with the effect on voluntary alcohol consumption. We also show that gut microbiota depletion by antibiotics administration causes a reduction in alcohol consumption (p < 0.001) and altered the relative abundance of relevant phyla such as Firmicutes, Bacteroidetes or Cyanobacteria (p < 0.05), among others. Benjamini–Hochberg false discovery rate (FDR) correction was performed for multiple comparisons. These studies reveal some of the consequences of alcohol on the IMB and provide evidence that manipulation of IMB may alter voluntary alcohol consumption.
Rationale Since energy drinks (EDs) were marketed to the general public as recreational and soft drinks, mixing these with alcohol has become a popular practice, especially in the younger population. Alcohol mixed with EDs (AmEDs) is a particularly alarming combination, given the evidence that consistently associate these drinks with increased risk behaviours and greater alcohol consumption. Caffeine and taurine are commonly found in EDs. In contrast to caffeine, the studies on taurine psychoactive properties and how this amino acid influences ethanol intake alone or in combination with caffeine are not so numerous. Objectives We summarised relevant and available data on the studies focusing on taurine as a psychoactive agent and its influence on ethanol (EtOH)-induced behaviours. Given the increased risk that represents mixing alcohol with energy drinks, we put emphasis on the research exploring the impact of these combinations on motivated behaviour towards EtOH consumption. ResultsThe research on taurine properties on motivated behaviour towards EtOH consumption is limited, and mostly all done in combination with caffeine or other molecules. This makes it difficult to elucidate the effect of this amino acid when combined with alcohol. Conclusions Incomplete understanding of the properties and effects of AmEDs is unavoidable until more studies are performed on the influence of taurine on motivation to consume alcohol. Taurine should be further explored, particularly in regard to its potential beneficial applications, motivational properties and synergies with other psychoactive ingredients (i.e. caffeine).
Background Although alcohol use disorder is a complex human pathology, the use of animal models represents an opportunity to study some aspects of this pathology. One of the most used paradigms to study the voluntary alcohol consumption in rodents is operant self‐administration (OSA). Aims In order to facilitate the performance of this paradigm, we aim to describe some critical steps of OSA under a saccharin‐fading procedure. Material & Methods We used 40 male Wistar rats to study the process of acquiring the operant response through a saccharin‐fading procedure under a fixed ratio (FR1) schedule of reinforcement. Next, we analyze the alcohol introduction and concentration increase, the effect of an alcohol deprivation, and the analogy between this paradigm with the Drinking in the Dark‐Multiple Scheduled Access paradigm. Results During alcohol concentration increase, animals reduced their lever presses in accordance with the increase in alcohol concentration. On the contrary, the consumption measured in g·kg−1 BW showed a great stability. The lever presses pattern within operant session changes with the introduction of different alcohol concentrations: at higher alcohol concentrations, animals tended to accumulate most of their presses in the initial period of the session. Discussion We show the utility of fading with low concentrations of saccharin and the evolution of the operant response through the different concentrations of alcohol. Conclusion Taken together, our results aimed to dissect the acquisition and maintenance of OSA behavior as well as other related variables, to facilitate the understanding and performance of this paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.