A new method, based on continuous wave-free precession nuclear magnetic resonance, is proposed as a high-throughput technique for measuring the oil content of intact seeds. The method has the potential to analyze more than 20 000 intact seeds per hour and is shown to be applicable even to mixtures of seeds of different species with similar fatty acid composition.
We propose the use of the low-field 1 H NMR technique to predict various properties of petroleum fractions with °API ranging from 21.7 to 32.7. The experimental data obtained by standard methodologies (ASTM D-1218, D 445-06, D-664-06, D-2892, and D-4052) were correlated with the mean values of the 1 H transverse relaxation time in the range between 25 and 675 ms. Results of the present work showed good correlations between the NMR relaxation data with viscosity, total acid number, refractive index, and API gravity. The main advantage of the proposed method is its nondestructiveness, together with its speed and the fact that it does not require solvents/dilution. This allows the assessment of several properties of petroleum fractions simultaneously, based on the output of only one NMR experiment, leading to large economy in terms of energy, time, and costs.
A novel cyanide-free zinc deposition bath was developed in which sorbitol was added at various concentrations. Voltammetric studies indicated that the reduction process is influenced thermodynamically and kinetically by the sorbitol concentration. Also, two cathodic processes were observed, one (wave) associated with the hydrogen evolution reaction (HER) on 1010 steel, the other (peak) with zinc bulk reduction, simultaneous to the HER. Furthermore, the plating-process kinetics was controlled by mass transport. The presence of sorbitol in the bath led to formation of light-grey zinc films, even during the HER, without cracks and dendrites. Plating current efficiency decreased from $62% to 43% on increasing the sorbitol concentration in the plating bath. In the presence of 0.1 M ½Zn(OH) 4 2À and/or sorbitol concentrations higher than 0.2 M, Zn electrode dissolution was inhibited. However, a small dissolution of zinc electrode was observed with 0.05 M sorbitol in alkaline solution without zincate. SEM micrographs showed that the 1010 steel substrate was fully covered by Zn film and that the sorbitol affected the morphology of zinc films, acting as a grain refiner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.