The competition between superconducting and ferromagnetic orderings in Josephson devices has promoted fundamental and applicative studies of high impact for superconducting digital technology, cryogenic memories, and spintronics, where the possibility of switching between different magnetic states is a crucial advantage. Here, we report on fabrication and characterization of very high quality tunnel ferromagnetic Josephson junctions (JJs) with aluminum electrodes, demonstrating hysteretic behavior of the magnetic field pattern preserving typical transport properties of Al junctions, underdamped behavior, and very low quasiparticle dissipation. The proposed technology paves the way for the possible implementation of Al tunnel-ferromagnetic JJs in superconducting quantum circuits, toward alternative approaches based on digital control of the Josephson device.
Aluminum Josephson junctions are the building blocks for the realization of superconducting quantum bits. Attention has been also paid to hybrid ferromagnetic Josephson junctions, which allow switching between different magnetic states, making them interesting for applications such as cryogenic memories, single-photon detectors, and spintronics. In this paper, we report on the fabrication and characterization of high-quality ferromagnetic Josephson junctions based on aluminum technology. We employed an innovative fabrication process inspired by niobium-based technology, allowing us to obtain very high-quality hybrid aluminum Josephson junctions; thus, supporting the use of ferromagnetic Josephson junctions in advanced quantum circuits. The fabrication process is described in detail and the main DC transport properties at low temperatures (current–voltage characteristic, critical current as a function of the temperature, and the external magnetic field) are reported. Here, we illustrate in detail the fabrication process, as well as the main DC transport properties at low temperatures (current–voltage characteristic, critical current as a function of the temperature, and the external magnetic field).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.