A new phytotoxic protein (cerato-platanin) of about 12.4 kDa has been identified in culture filtrates of the Ascomycete Ceratocystis fimbriata f. sp. platani, the causal agent of canker stain disease. The toxicity of the pure protein was bioassayed by detecting the inducing necrosis in tobacco leaves. The pure protein also elicited host synthesis of fluorescent substances in tobacco and plane (Platanus acerifolia) leaves. We purified the protein from culture medium to homogeneity. Its complete amino acid sequence was determined; this protein consists of 120 amino acid residues, contains 4 cysteines (S-S-bridged), and has a high percentage of hydrophobic residues. The molecular weight calculated from the amino acid sequence agrees with that determined by mass spectrometry, suggesting that no post-transnational modification occurs. Searches performed by the BLAST program in data banks (Swiss-Prot, EBI, and GenBank) revealed that this protein is highly homologous with two proteins produced by other Ascomycete fungi. One, produced during infection of wheat leaves, is codified by the snodprot1 gene of Phaeosphaeria nodorum (the causal agent of glume blotch of wheat), whereas the other is the rAsp f13 allergen from Aspergillus fumigatus. Furthermore, the N terminus of cerato-platanin is homologous with that of cerato-ulmin, a phytotoxic protein belonging to the hydrophobin family and produced by Ophiostoma (Ceratocystis) ulmi, a fungus responsible for Dutch elm disease.The European plane tree (Platanus acerifolia) is an ornamental plant species of the urban environment. A great number of plane trees in the parks and towns of southern Europe have been destroyed by Ceratocystis fimbriata (Ell. and Halst.) Davidson f. sp. platani Walter, the Ascomycete responsible for canker stain disease (1). This disease is characterized by foliar wilting and spreading lesions that involve phloem, cambium, and extensive regions of sapwood (2, 3). The pathogen spreads from tree to tree by means of root grafts of closely spaced plants and, more frequently, through wounds caused by pruning (4).The American species Platanus occidentalis has been shown to contain a source of resistance to C. fimbriata f. sp. platani that could prove of great interest in the genetic improvement of the European plane (5). Known post-infection host defense mechanisms involve physical factors such as the occlusion of the xylematic vessels and the compartmentalization of infected tissue areas as well as the production of flavans, umbelliferone, and scopoletine phytoalexins (6 -9). Unfortunately, only resistant P. occidentalis clones, not yet acclimatized to Europe, localized the disease (7,8). Recent papers (10, 11) have shown that C. fimbriata f. sp. platani displays an array of phytotoxic metabolites possibly involved in determining some of the symptoms of canker stain.In the present paper we report on the purification procedure, the amino acid sequence, and the characterization of the biological activity of a new protein (named cerato-platanin) from the cul...
Cerato-platanin (CP) is a secretion protein produced by the fungal pathogen Ceratocystis platani, the causal agent of the plane canker disease and the first member of the CP family. CP is considered a pathogen-associated molecular pattern because it induces various defense responses in the host, including production of phytoalexins and cell death. Although much is known about the properties of CP and related proteins as elicitors of plant defense mechanisms, its biochemical activity and host target(s) remain elusive. Here, we present the three-dimensional structure of CP. The protein, which exhibits a remarkable pH and thermal stability, has a double -barrel fold quite similar to those found in expansins, endoglucanases, and the plant defense protein barwin. Interestingly, although CP lacks lytic activity against a variety of carbohydrates, it binds oligosaccharides. We identified the CP region responsible for binding as a shallow surface located at one side of the -barrel. Chemical shift perturbation of the protein amide protons, induced by oligo-N-acetylglucosamines of various size, showed that all the residues involved in oligosaccharide binding are conserved among the members of the CP family. Overall, the results suggest that CP might be involved in polysaccharide recognition and that the double -barrel fold is widespread in distantly related organisms, where it is often involved in host-microbe interactions.
Cerato-platanin (CP) is a non-catalytic protein with a double =β-barrel fold located in the cell wall of the phytopathogenic fungus Ceratocystis platani. CP is released during growth and induces defence-related responses in plants. CP is also the first member of the "cerato-platanin family" (CPF) (Pfam PF07249). In the CPF, the molecular mechanism of action on plants and above all the biological role in fungal life are little-known aspects. However, an expansin-like function has recently been suggested concerning CP. Expansin-like proteins have the ability to act non-hydrolytically on cellulose. In the present work, the expansin-like activity of CP and Pop1, a CP family member, was investigated. Like expansins, CP and Pop1 were able to weaken filter paper in a concentration-dependent manner and without the production of reducing sugars. A metal-dependent polysaccharide monooxygenase-like activity was excluded. The optimum of activity was pH5.0, 38°C. CP was also able to cause fragmentation of the crystalline cellulose Avicel and the breakage and defibration of cotton fibres. However, the interaction did not involve a stable bond with the substrates and CP did not significantly enhance the hydrolytic activity of cellulase. On the other hand, CP and Pop1 bound quickly to chitin. We consider CP as a novel one-domain expansin-like protein. We propose a structural role for CP in the fungal cell wall due to the ability to bind chitin, and hypothesize a functional role in the interaction of the fungus with the plant for the weakening activity shown on cellulose.
Five phosphotyrosine-containing peptides have been synthesized by FMOC solid-phase peptide synthesis. These peptides correspond to the 4114 19 sequence of the Xenopus src oncogene, to the 1191 1220 sequence of the human EGF receptor precursor, to the 1146-1158 sequence of the human insulin receptor, to the 85(~865 sequence of the human/~-PDGF receptor, and to the 5-16 sequence of the erythrocyte human band 3. The peptides were used as substrates for activity assay of two isoforms (AcP1 and AcP2) of a low molecular weight cytosolic PTPase. The assay, performed in microtiter EIA plates using Malachite green to determine the released phosphate, was rapid, reproducible, and sensitive. Both PTPase isoforms were able to hydrolyze all synthesized peptides, though with different affinity and rate. The main kinetic parameters were compared and discussed with respect to the role of the two enzymes in the cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.