A number of online services nowadays rely upon machine learning to extract valuable information from data collected in the wild. This exposes learning algorithms to the threat of data poisoning, i.e., a coordinate attack in which a fraction of the training data is controlled by the attacker and manipulated to subvert the learning process. To date, these attacks have been devised only against a limited class of binary learning algorithms, due to the inherent complexity of the gradient-based procedure used to optimize the poisoning points (a.k.a. adversarial training examples). In this work, we first extend the definition of poisoning attacks to multiclass problems. We then propose a novel poisoning algorithm based on the idea of back-gradient optimization, i.e., to compute the gradient of interest through automatic differentiation, while also reversing the learning procedure to drastically reduce the attack complexity. Compared to current poisoning strategies, our approach is able to target a wider class of learning algorithms, trained with gradientbased procedures, including neural networks and deep learning architectures. We empirically evaluate its effectiveness on several application examples, including spam filtering, malware detection, and handwritten digit recognition. We finally show that, similarly to adversarial test examples, adversarial training examples can also be transferred across different learning algorithms.
Recent statistics show that in 2015 more than 140 millions new malware samples have been found. Among these, a large portion is due to ransomware, the class of malware whose specific goal is to render the victim's system unusable, in particular by encrypting important files, and then ask the user to pay a ransom to revert the damage. Several ransomware include sophisticated packing techniques, and are hence difficult to statically analyse. We present EldeRan, a machine learning approach for dynamically analysing and classifying ransomware. EldeRan monitors a set of actions performed by applications in their first phases of installation checking for characteristics signs of ransomware. Our tests over a dataset of 582 ransomware belonging to 11 families, and with 942 goodware applications, show that El-deRan achieves an area under the ROC curve of 0.995. Furthermore, EldeRan works without requiring that an entire ransomware family is available beforehand. These results suggest that dynamic analysis can support ransomware detection, since ransomware samples exhibit a set of characteristic features at run-time that are common across families, and that helps the early detection of new variants. We also outline some limitations of dynamic analysis for ransomware and propose possible solutions.
Many machine learning systems rely on data collected in the wild from untrusted sources, exposing the learning algorithms to data poisoning. Attackers can inject malicious data in the training dataset to subvert the learning process, compromising the performance of the algorithm producing errors in a targeted or an indiscriminate way. Label flipping attacks are a special case of data poisoning, where the attacker can control the labels assigned to a fraction of the training points. Even if the capabilities of the attacker are constrained, these attacks have been shown to be effective to significantly degrade the performance of the system. In this paper we propose an efficient algorithm to perform optimal label flipping poisoning attacks and a mechanism to detect and relabel suspicious data points, mitigating the effect of such poisoning attacks. 1
Attack graphs are a powerful tool for security risk assessment by analysing network vulnerabilities and the paths attackers can use to compromise network resources. The uncertainty about the attacker's behaviour makes Bayesian networks suitable to model attack graphs to perform static and dynamic analysis. Previous approaches have focused on the formalization of attack graphs into a Bayesian model rather than proposing mechanisms for their analysis. In this paper we propose to use efficient algorithms to make exact inference in Bayesian attack graphs, enabling the static and dynamic network risk assessments. To support the validity of our approach we have performed an extensive experimental evaluation on synthetic Bayesian attack graphs with different topologies, showing the computational advantages in terms of time and memory use of the proposed techniques when compared to existing approaches.
Deep Convolutional Networks (DCNs) have been shown to be vulnerable to adversarial examples-perturbed inputs speci cally designed to produce intentional errors in the learning algorithms at test time. Existing input-agnostic adversarial perturbations exhibit interesting visual pa erns that are currently unexplained. In this paper, we introduce a structured approach for generating Universal Adversarial Perturbations (UAPs) with procedural noise functions. Our approach unveils the systemic vulnerability of popular DCN models like Inception v3 and YOLO v3, with single noise pa erns able to fool a model on up to 90% of the dataset. Procedural noise allows us to generate a distribution of UAPs with high universal evasion rates using only a few parameters. Additionally, we propose Bayesian optimization to e ciently learn procedural noise parameters to construct inexpensive untargeted black-box a acks. We demonstrate that it can achieve an average of less than 10 queries per successful a ack, a 100-fold improvement on existing methods. We further motivate the use of input-agnostic defences to increase the stability of models to adversarial perturbations. e universality of our a acks suggests that DCN models may be sensitive to aggregations of low-level class-agnostic features. ese ndings give insight on the nature of some universal adversarial perturbations and how they could be generated in other applications. CCS CONCEPTS•Computing methodologies → Machine learning; •Security and privacy → Usability in security and privacy; KEYWORDS Adversarial examples; Bayesian optimization; black-box a acks; computer vision; deep neural networks; procedural noise arXiv:1810.00470v3 [cs.CR]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.