[1] First observational evidence of time-mean cyclonic recirculation southwest of Iberia is presented. Data sets of hydrography, satellite altimetry and surface drifters velocities are analyzed jointly in order to obtain an accurate time-averaged circulation in the mid-latitude northeast Atlantic off the Gulf of Cadiz. A cyclonic recirculation cell with characteristics similar to those predicted by theoretical and modeling studies is detected in all computed velocity fields. The cell in the upper 1000-m layer exhibits transports of 3 to 4 Sv that are only slightly smaller than the model transports. The cell is centered at approximately 36°N, 10°W, is elongated zonally and extends to 15°W westwards. Wind driven Sverdrup transport and b-plume dynamics are both suggested to play a role in the generation of the cyclonic cell, but the relative contribution of these effects is yet to be clarified. The core of the recirculation appears compact and the magnitude of the cell fades westwards much faster than predicted by the theoretical and modeling studies considered.
to study the diurnal variability of the cross-shelf circulation. This period was chosen because it had a steady upwellingfavourable wind condition modulated by a diurnal cycle much similar to sea breeze.The daily variability of the observed cross-shelf circulation consisted of three distinct periods: a morning period with a 3-layer vertical structure with onshore velocities at mid-depth, a mid-day period where the flow is reversed and has a 2-layer structure with onshore velocities at the surface and offshore flow below, and, lastly, in the evening, a 2-layer period with intensified offshore velocities at the surface and onshore flow at the bottom. The observed cross-shelf circulation showed a peculiar vertical shape and diurnal variability different from several other systems described in literature. We hypothesize that the flow reversal of the cross-shelf circulation results as a response to the rapid change of the wind magnitude and direction at mid-day with the presence of the cape north of the mooring site influencing this response.A numerical modelling experiment exclusively forced by winds simulated successfully most of the circulation at the ADCP site, especially the mid-day reversal and the evening's upwelling-type structure. This supports the hypothesis that the cross-shelf circulation at diurnal timescales is mostly wind-driven. By analysing the 3D circulation in the vicinity of Cape Sines we came to the conclusion that the diurnal variability of the wind and the flow interaction with topography are responsible for the circulation variability at the ADCP site, though only a small region in the south of the cape showed a similar diurnal variability.The fact that the wind diurnally undergoes relaxation and intensification strongly affects the circulation, promoting superficial onshore flows in the leeside of Cape Sines. Despite the small-scale nature of the observed cross-shelf circulation, onshore flows as the ones described in this study can be particularly helpful to understand the transport and settlement of larvae in this region and in other regions with similar topography and wind characteristics.
Salinity is one of the oldest parameters being measured in oceanography and one of the most important to study in the context of climate change. However, its quantification by satellite remote sensing has been a relatively recent achievement. Currently, after over ten years of data gathering, there are still many challenges in quantifying salinity from space, especially when it is intended for coastal environments study. That is mainly due to the spatial resolution of the available products. Recently, a new higher resolution (5 km) L4 SMOS sea surface salinity (SSS) product was developed by the Barcelona Expert Center (BEC). In this study, the quality of this product was tested along the Western Iberian Coast through its comparison with in situ observations and modelled salinity estimates (CMEMS IBI Ocean Reanalysis system). Moreover, several parameters such as the temperature and depth of in situ measurements were tested to identify the variables or processes that induced higher errors in the product or influenced its performance. Lastly, a seasonal and interannual analysis was conducted considering data between 2011 to 2019 to test the product as a potential tool for long-term studies. The results obtained in the present analysis showed a high potential of using the L4 BEC SSS SMOS product in extended temporal and spatial analyses along the Portuguese coast. A good correlation between the satellite and the in situ datasets was observed, and the satellite dataset showed lower errors in retrieving coastal salinities than the oceanic model. Overall, the distance to the coast and the closest rivers were the factors that most influenced the quality of the product. The present analysis showed that great progress has been made in deriving coastal salinity over the years and that the SMOS SSS product is a valuable contribution to worldwide climatological studies. In addition, these results reinforce the need to continue developing satellite remote sensing products as a global and cost-effective methodology for long-term studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.