Lung ultrasound (LUS) is as an easily accessible, radiation-free imaging technique that might be used as a diagnostic tool in community-acquired pneumonia (CAP). The aim of the study was to evaluate the usefulness and accuracy of LUS in the diagnosis and monitoring of childhood CAP. One hundred six consecutive children aged between 1 and 213 (median 52.5) months referred to the hospital with suspicion of CAP were enrolled. All patients underwent LUS on the day of admission, followed by chest radiograph (CXR). Lung ultrasound was also performed in 25 children between 5th-7th and 31 children between 10th-14th day after admission. Radiographic signs of pneumonia were demonstrated in 76 children, while lung ultrasound revealed pulmonary abnormalities consistent with pneumonia in 71 children. LUS gave false negative results in 5 patients with parahilar pulmonary infiltrates demonstrated by CXR. Almost perfect overall agreement between LUS and CXR was found in terms of pneumonia diagnosis (Cohen kappa coefficient of 0.89). The diagnostic performance of LUS in demonstration of lung involvement was as follows: sensitivity of 93.4%, specificity of 100%, positive predictive value of 100%, negative predictive value of 85.7% and accuracy of 95.3%. Our study showed that LUS is a sensitive and highly specific diagnostic method in children with CAP. Therefore, LUS may be considered as the first imaging test in children with suspicion of CAP. A diagnostic algorithm of CAP which includes LUS should be validated in prospective studies. Lung ultrasound can also be used to follow-up resolution of pneumonic lesions.
Lung ultrasound (LUS) has been increasingly used in diagnosing and monitoring of various pulmonary diseases in children. The aim of the current study was to evaluate its usefulness in children with persistent tachypnea of infancy (PTI). This was a controlled, prospective, cross‐sectional study that included children with PTI and healthy subjects. In patients with PTI, LUS was performed at baseline and then after 6 and 12 months of follow‐up. Baseline results of LUS were compared to (a) baseline high‐resolution computed tomography (HRCT) images, (b) LUS examinations in control group, and (c) follow‐up LUS examinations. Twenty children with PTI were enrolled. B‐lines were found in all children with PTI and in 11 (55%) control subjects (P < .001). The total number of B‐lines, the maximal number of B lines in any intercostal space, the distance between B‐lines, and pleural thickness were significantly increased in children with PTI compared to controls. An irregularity of the pleural line was found in all patients with PTI and in none of the healthy children. There were no significant changes in LUS findings in patients with PTI during the study period. The comparison of HRCT indices and LUS findings revealed significant correlations between the mean lung attenuation, skewness, kurtosis and fraction of interstitial pulmonary involvement, and the number of B‐lines as well as the pleural line thickness. LUS seems to be a promising diagnostic tool in children with PTI. Its inclusion in the diagnostic work‐up may enable to reduce the number of costly, hazardous, and ionizing radiation‐based imaging procedures.
Metronidazole-induced encephalopathy (MIE) is a rare and unpredictable complication that is most commonly reported in adults. Here, we present the case of MIE in a patient treated with rectal, oral, and intravenous metronidazole. This is the first case of MIE reported after suppositories. A 16-year-old girl with Crohn’s disease treated with mesalazine and exclusive enteral nutrition was operated on due to perianal fistulas and abscesses. She received oral metronidazole for 25 days and rectal metronidazole for 15 days as an adjuvant before surgery. Moreover, 2.5 g of intravenous metronidazole was administrated during the perioperative period. The second day after the surgery, symptoms of cerebellar syndrome appeared. She presented with an inability to coordinate balance and gait. Although she showed accurate verbal responses, her speech was slow, slurred, and scanning. The finger–nose test was positive. The T2-weighted magnetic resonance imaging revealed an increased symmetrical signal within the dentate nuclei of the cerebellum and in the corpus callosum. The changes were characterized by restricted diffusion. Based on the clinical picture and magnetic resonance imaging findings, MIE was diagnosed. Treatment with metronidazole was discontinued. The cumulative dose of metronidazole that she received for 29 days was 54 g: 38 g p.o., 13.5 g p.r., and 2.5 g i,v. The first symptoms appeared on the 28th day of antibiotic therapy after receiving 52 g of metronidazole. The neurological symptoms resolved after six days; however, three days after the resolution, paresthesia appeared in the distal phalanges of both feet and lasted for approximately two months. Our report highlights that neurologic symptoms related to metronidazole treatment should raise the suspicion of MIE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.