We show that it is possible to engineer magnetic multi-domain configurations without domain walls in a prototypical rare earth/transition metal ferrimagnet using keV He + ion bombardment. We additionally shown that these patterns display a particularly stable magnetic configuration due to a deep minimum in the free energy of the system which is caused by flux closure and the corresponding reduction of the magnetostatic part of the total free energy. This is possible because light-ion bombardment differently affects an elements relative contribution to the effective properties of the ferrimagnet. The impact of bombardment is stronger for rare earth elements. Therefore, it is possible to influence the relative contributions of the two magnetic subsystems in a controlled manner. The selection of material system and the use of light-ion bombardment open a route to engineer domain patterns in continuous magnetic films much smaller than what is currently considered possible.
The ability to perform wide-range tuning of the magnetic field required to switch the magnetization of ferromagnetic layers with perpendicular magnetic anisotropy is of great importance for many applications. We show that, for (Au/Co)2(3) multilayers, this field can be changed from minus several kOe to plus several kOe because of changes to the coupling with a ferrimagnetic multilayer [either (Tb/Fe)6 or (Tb/Co)6] across a Au spacer (either homogeneous 1 nm thick or wedge-shaped). The adjustable parameters are the ratio of sublayer thicknesses of the ferrimagnet and the sequence of layers around the Au spacer. The change of the sequence from Co/Au/Co to Tb/Au/Co is accompanied by both the reduction of the interaction energy and the change of the magnetic field sign necessary to switch the magnetization of ferromagnetic multilayers. For a 1 nm thick Au spacer this fields change from positive (negative) to negative (positive) if the ferrimagnet is dominated by the transition metal (rare earth) as a result of its composition. The characteristic oscillatory behavior of RKKY-like coupling is demonstrated using a system with a wedge-shaped Au spacer.
In spintronics and magnonics, materials that offer tunable perpendicular magnetic anisotropy (PMA) along with low Gilbert damping and high spin polarization are particularly important. Therefore, a lot of studies are performed on Co/Ni films, that aim at satisfying all these requirements. Moreover, the Dzyaloshinskii−Moriya interaction is induced in them by surrounding the magnetic layers with heavy metal or oxide layers. For this reason, the study of the oxidation of Co/Ni is of particular interest. Therefore, the magnetic properties of Co/Ni bilayers after plasma oxidation (PO) are investigated. It is shown that the magnetic anisotropy of these bilayers can be tuned, not only by the thicknesses of Co and Ni layers, but also by oxidation time varied in the range between 15 and 220 s. After PO, the effective thickness of ferromagnetic Ni is reduced, but it does not oxidize more than ≈2 nm, even for longer oxidation. However, the contribution to PMA increases for the entire range of oxidation times. This indicates that the thickness reduction of the Ni layer is not the only source of PMA enhancement. This additional contribution is attributed to the exchange bias coupling between the ferromagnetic (Co/Ni) and the antiferromagnetic NiO layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.