Co-infection of rainbow trout with infections haematopoietic necrosis virus (IHNV)and Flavobacterium psychrophilum is known to occur, and it has been speculated that a combined infection can result in dramatic losses. Both pathogens can persist in fish in an asymptomatic carrier state, but the impact of co-infection has not been well characterized or documented. In this study, it was hypothesized that fish co-infected with F. psychrophilum and IHNV would exhibit greater mortality than fish infected with either pathogen alone. To test this, juvenile rainbow trout were co-infected with low doses of either IHNV or F. psychrophilum, and at 2 days post-initial challenge, they were given a low dose of the reciprocal pathogen. This combined infection caused high mortality (76.2%-100%), while mortality from a single pathogen infection with the same respective dose was low (5%-20%). The onset of mortality was earlier in the co-infected group (3-4 days) when compared with fish infected with F. psychrophilum alone (6 days) or IHNV (5 days), confirming the synergistic interaction between both pathogens. Co-infection led to a significant increase in the number of F. psychrophilum colony-forming units and IHNV plaque-forming units within tissues. This finding confirms that when present together in co-infected fish, both pathogens are more efficiently recovered from tissues. Furthermore, pathogen genes were significantly increased in co-infected groups, which parallel the findings of increased systemic pathogen load. Extensive tissue necrosis and abundant pathogen present intracellularly and extracellularly in haematopoietic tissue. This was pronounced in co-infected fish and likely contributed to the exacerbated clinical signs and higher mortality. This study provides novel insight into host-pathogen interactions related to co-infection by aquatic bacterial and viral pathogens and supports our hypothesis. Such findings confirm that mortality in fish exposed to both pathogens is greatly elevated compared to a single pathogen infection. K E Y W O R D S co-infection, Flavobacterium psychrophilum, IHNV, rainbow trout How to cite this article: Ma J, Bruce TJ, Oliver L, Cain KD. Co-infection of rainbow trout (Oncorhynchus mykiss) with infectious haematopoietic necrosis virus and Flavobacterium psychrophilum. J Fish Dis. 2019;42:1065-1076. https ://doi.
To date, most aquaponic research has been conducted outdoors in tropical climates or in greenhouses in subtropical climates. For more northerly latitudes, aquaponic production will require supplemental light in greenhouses or insulated buildings. Two separate 3-wk growth trials were conducted to evaluate the effects of four different lighting technologies on the growth of Swiss chard, Beta vulgaris (Trial 1) and kale, Brassica oleracea (Trial 2) in aquaponic systems. Light technologies evaluated included fluorescent (FLO), metal halide (MH), induction (IND), and light-emitting diode (LED). Four 1175-L systems were used with all four light types represented in each system in a complete block design. Juvenile Nile tilapia, Oreochromis niloticus (241 g) were stocked in each system and fed a floating 32% protein diet at a rate of 60 g/m 2 of plant grow space per day. In Trial 1, Swiss chard plants grown under LED lights for 3 wk achieved significantly higher (P ≤ 0.05) average individual weights (117.7 g), higher production per unit of area (3535 g/m 2 ), and higher production per unit of energy (32.3 g/m 2 /kwh) than Swiss chard grown under the other three light types, which did not differ significantly (P > 0.05) from each other. In Trial 2, kale grown under LED lights achieved significantly higher (P ≤ 0.05) average individual weights (102.9 g), higher production per unit of area (2136.6 g/m), and higher production per unit of energy (381.5 g/m 2 /kwh) than kale grown under the other three light types, which did not differ significantly (P > 0.05). The results of the two trials are in agreement and indicate that LED lights were superior to MH, FLO, and IND lights in terms of absolute plant growth as well as growth per unit of energy consumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.