Pulmonary breathing sound plays a key role in the prevention and diagnosis of the lung diseases. Its correlation with pathology and physiology has become an important research topic in the pulmonary acoustics and the clinical medicine. However, it is difficult to fully describe lung sound information with the traditional features because lung sounds are complex and nonstationary signals. And the traditional convolutional neural network cannot also extract the temporal features of the lung sounds. To solve the problem, a lung sound recognition algorithm based on VGGish-BiGRU is proposed on the basis of transfer learning, which combines VGGish network with the bidirectional gated recurrent unit neural network (BiGRU). In the proposed algorithm, VGGish network is pretrained using audio set, and the parameters are transferred to VGGish network layer of the target network. The temporal features of the lung sounds are extracted through retraining BiGRU network with the lung sound data. During retraining BiGRU network, the parameters in VGGish layers are frozen, and the parameters of BiGRU network are fine-tuned. The experimental results show that the proposed algorithm effectively improves the recognition accuracy of the lung sounds in contrast with the state-of-the-art algorithms, especially the recognition accuracy of asthma.INDEX TERMS BiGRU, lung sound recognition, Mel spectrogram, transfer learning, VGGish.
Radiation therapy plays an essential role in the treatment of cancer. In radiation therapy, the ideal radiation doses are delivered to the observed tumor while not affecting neighboring normal tissues. In three-dimensional computed tomography (3D-CT) scans, the contours of tumors and organs-at-risk (OARs) are often manually delineated by radiologists. The task is complicated and time-consuming, and the manually delineated results will be variable from different radiologists. We propose a semi-supervised contour detection algorithm, which firstly uses a few points of region of interest (ROI) as an approximate initialization. Then the data sequences are achieved by the closed polygonal line (CPL) algorithm, where the data sequences consist of the ordered projection indexes and the corresponding initial points. Finally, the smooth lung contour can be obtained, when the data sequences are trained by the backpropagation neural network model (BNNM). We use the private clinical dataset and the public Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset to measure the accuracy of the presented method, respectively. To the private dataset, experimental results on the initial points which are as low as 15% of the manually delineated points show that the Dice coefficient reaches up to 0.95 and the global error is as low as 1.47 × 10. The performance of the proposed algorithm is also better than the cubic spline interpolation (CSI) algorithm. While on the public LIDC-IDRI dataset, our method achieves superior segmentation performance with average Dice of 0.83.
Scene classification is one of the bases for automatic remote sensing image interpretation. Recently, deep convolutional neural networks have presented promising performance in high-resolution remote sensing scene classification research. In general, most researchers directly use raw deep features extracted from the convolutional networks to classify scenes. However, this strategy only considers single scale features, which cannot describe both the local and global features of images. In fact, the dissimilarity of scene targets in the same category may result in convolutional features being unable to classify them into the same category. Besides, the similarity of the global features in different categories may also lead to failure of fully connected layer features to distinguish them. To address these issues, we propose a scene classification method based on multi-scale deep feature representation (MDFR), which mainly includes two contributions: (1) region-based features selection and representation; and (2) multi-scale features fusion. Initially, the proposed method filters the multi-scale deep features extracted from pre-trained convolutional networks. Subsequently, these features are fused via two efficient fusion methods. Our method utilizes the complementarity between local features and global features by effectively exploiting the features of different scales and discarding the redundant information in features. Experimental results on three benchmark high-resolution remote sensing image datasets indicate that the proposed method is comparable to some state-of-the-art algorithms.
Purposes: An image processing procedure was developed in this study to detect large quantity of landmark pairs accurately in pairs of volumetric medical images. The detected landmark pairs can be used to evaluate of deformable image registration (DIR) methods quantitatively. Methods: Landmark detection and pair matching were implemented in a Gaussian pyramid multiresolution scheme. A 3D scale-invariant feature transform (SIFT) feature detection method and a 3D Harris-Laplacian corner detection method were employed to detect feature points, i.e., landmarks. A novel feature matching algorithm, Multi-Resolution Inverse-Consistent Guided Matching or MRICGM, was developed to allow accurate feature pairs matching. MRICGM performs feature matching using guidance by the feature pairs detected at the lower resolution stage and the higher confidence feature pairs already detected at the same resolution stage, while enforces inverse consistency. Results: The proposed feature detection and feature pair matching algorithms were optimized to process 3D CT and MRI images. They were successfully applied between the inter-phase abdomen 4DCT images of three patients, between the original and the re-scanned radiation therapy simulation CT images of two head-neck patients, and between inter-fractional treatment MRIs of two patients. The proposed procedure was able to successfully detect and match over 6300 feature pairs on average. The automatically detected landmark pairs were manually verified and the mismatched pairs were rejected. The automatic feature matching accuracy before manual error rejection was 99.4%. Performance of MRICGM was also evaluated using seven digital phantom datasets with known ground truth of tissue deformation. On average, 11855 feature pairs were detected per digital phantom dataset with TRE = 0.77 AE 0.72 mm. Conclusion: A procedure was developed in this study to detect large number of landmark pairs accurately between two volumetric medical images. It allows a semi-automatic way to generate the ground truth landmark datasets that allow quantitatively evaluation of DIR algorithms for radiation therapy applications.
To develop and implement an automated plan check (APC) tool using a Six Sigma methodology with the aim of improving safety and efficiency in external beam radiotherapy. Methods: The Six Sigma define-measure-analyze-improve-control (DMAIC) framework was used by measuring defects stemming from treatment planning that were reported to the departmental incidence learning system (ILS). The common error pathways observed in the reported data were combined with our departmental physics plan check list, and AAPM TG-275 identified items. Prioritized by risk priority number (RPN) and severity values, the check items were added to the APC tool developed using Varian Eclipse Scripting Application Programming Interface (ESAPI). At 9 months post-APC implementation, the tool encompassed 89 check items, and its effectiveness was evaluated by comparing RPN values and rates of reported errors. To test the efficiency gains, physics plan check time and reported error rate were prospectively compared for 20 treatment plans. Results: The APC tool was successfully implemented for external beam plan checking. FMEA RPN ranking re-evaluation at 9 months post-APC demonstrated a statistically significant average decrease in RPN values from 129.2 to 83.7 (P < .05). After the introduction of APC, the average frequency of reported treatment-planning errors was reduced from 16.1% to 4.1%. For high-severity errors, the reduction was 82.7% for prescription/plan mismatches and 84.4% for incorrect shift note. The process shifted from 4σ to 5σ quality for isocenter-shift errors. The efficiency study showed a statistically significant decrease in plan check time (10.1 ± 7.3 min, P = .005) and decrease in errors propagating to physics plan check (80%). Conclusions: Incorporation of APC tool has significantly reduced the error rate. The DMAIC framework can provide an iterative and robust workflow to improve the efficiency and quality of treatment planning procedure enabling a safer radiotherapy process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.