In this paper, we propose and numerically demonstrate a novel cascaded silicon-on-insulator (SOI) photonic crystal nanobeam cavity (PCNC) dual-parameter sensor for the simultaneous detection of relative humidity (RH) and temperature. The structure consists of two independent PCNCs supporting two different resonant modes: a dielectric-mode and an air-mode, respectively. The dielectric-mode nanobeam cavities (cav1) are covered with SU-8 cladding to increase the sensitivity ratio contrast between RH sensing and temperature sensing. The air-mode nanobeam cavities (cav2) are coated with a water-absorbing polyvinyl-alcohol (PVA) layer that converts the change in RH into a change in refractive index (RI) under different ambient RH levels, thereby inducing a wavelength shift. Due to the positive thermo-optic (TO) coefficient of silicon and the negative TO coefficient of SU-8 cladding, the wavelength responses take the form of a red shift for cav2 and a blue shift for cav1 as the ambient temperature increases. By using 3D finite-difference time-domain (3D-FDTD) simulations, we prove the feasibility of simultaneous sensing by monitoring a single output transmission spectrum and applying the sensor matrix. For cav1, the RH and temperature sensitivities are 0 pm/%RH and −37.9 pm/K, while those of cav2 are −389.2 pm/%RH and 58.6 pm/K. The sensitivity ratios of temperature and RH are −1.5 and 0, respectively, which is the reason for designing two different resonant modes and also implies great potential for realizing dual-parameter sensing detection. In particular, it is also noteworthy that we demonstrate the ability of the dual-parameter sensor to resist external interference by using the dual wavelength matrix method. The maximum RH and temperature detection errors caused by the deviation of resonance wavelength 1 pm are only 0.006% RH and 0.026 K, which indicates that it achieves an excellent anti-interference ability. Furthermore, the structure is very compact, occupying only 32 μm × 4 μm (length × width). Hence, the proposed sensor shows promising prospects for compact lab-on-chip integrated sensor arrays and sensing with multiple parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.