The presence of sufficient genetic variability, the knowledge of nature of association among different characters and relative contribution of different characters to yield is a prerequisite to any breeding programme. The aim of the present study was to estimate genetic parameters of thirteen yield and yield attributing traits in 40 landraces of rice with a view to select better yield attributes in rice. The higher value of phenotypic co-efficient of variation (PCV) compared to the corresponding genotypic coefficient of variation (GCV) for all the studied traits indicated that there was an influence of the environment. Number of unfilled grains per panicle exhibited high estimates of PCV and GCV followed by number of filled grains per panicle, number of grains per panicle, flag leaf area. High heritability coupled with high genetic advance was observed in flag leaf area, pollen fertility, number of grains per panicle and number of filled grains per panicle which reflected that the direct selection of these characters based on phenotypic expression by simple selection method for yield improvement would be more reliable Grain yield per plant showed significant and positive association with days to 50% flowering, days to maturity, flag leaf area, number of total tillers per hill, number of effective tillers per hill, pollen fertility, number of grains per panicle, number of filled grains per panicle indicating selection of these characters for yield improvement may be rewarding. Both at phenotypic and genotypic level, days to 50% flowering, flag leaf area, number of effective tillers per hill, pollen fertility, panicle length, number of grains per panicle and 100 seed weight had direct positive effect on yield per plant indicating their importance during selection in yield improvement program. Moreover, the information generated from this study, can be exploited in future rice breeding program.
J. Bangladesh Agril. Univ. 17(1): 26–32, March 2019
Twenty spring wheat varieties were studied to find out genetic variability and genetic association for grain yield and its component characters. Both genotypic and phenotypic variances were highly significant in all the traits with little higher phenotypic variations as usual. Similarly, the low differences between the phenotypic and genotypic coefficients of variations indicated low environmental influences on the expression of these characters. High heritability coupled with high genetic advance were obtained with plant height, grains per spike, 100-grain weight, harvest index and grain yield. Genotypic correlation coefficients were higher than the corresponding phenotypic correlation coefficients in most of the traits. Spikes per plant, grains per spike, spike length, 100-grain weight and harvest index were the most important characters which possessed positive association with grain yield. Path coefficient analysis revealed that among the different yield contributing characters spike per plant, grains per spike, 100-grain weight and harvest index influenced grain yield per plant directly. The direct effects of these characters on grain yield were positive and considerably high. Moreover, harvest index, days to maturity and spikes per plant had positive and higher indirect effect on grain yield through grains per spike. Thus selection for yield in spring wheat through these characters would be effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.